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1 Introduction

In this essay we will be concerned with complex algebraic varieties. A particularly nice thing
about these objects is that they can be viewed in two ways: we can examine their properties and
behaviour from a strictly algebraic point of view, i.e. through the lens of algebraic geometry, and
also from an analytic point of view since they can be endowed with the structure of a complex
analytic space (in particular, of a complex manifold if non-singular), which gives us the freedom
to apply results from complex manifold theory and analysis.

Our main focus in this exposition will be on the one hand to examine the interplay between these
two approaches and on the other to present some results about the cohomology of complex alge-
braic varieties. More precisely, we will see when the application of algebraic techniques, which
are in general more rigid and powerful in this setting, can successfully substitute topological
or analytic methods. It will be the case that many statements about the singular/de Rham
or sheaf cohomology can often be reduced under certain assumptions to algebraic statements
and computations (Section 3 - GAGA Theorem, Section 4 - Grothendieck’s algebraic de Rham
Theorem, Section 5 - degeneracy of the Hodge to de Rham spectral sequence). Moreover, we
will discuss the Hodge Theorem and Hodge decomposition for the cohomology of a compact,
Kähler manifold and thus for a smooth projective complex variety.

We begin with stating some known facts in Section 2, which serves an introductory purpose.
These regard coherent sheaves on algebraic varieties and cohomology of coherent sheaves. The
results mentioned can be found in [2], [11, Chapter III], [12] and [13].

Section 3 is about Jean-Pierre Serre’s GAGA Theorem. Our treatment follows closely Serre’s
original paper [1]. We see that any complex algebraic variety X has the structure of a com-
plex analytic space Xan in a natural way. This extends to a correspondence between coherent
algebraic sheaves on X and coherent analytic sheaves on Xan. GAGA shows that in the case
of projective varieties there is an equivalence between these two categories and also that sheaf
cohomology stays invariant under this correspondence. We present Serre’s original proof with
few omissions and in addition some neat applications, e.g. Chow’s theorem.

In Section 4 we give an exposition of Grothendieck’s algebraic de Rham theorem. It draws
mainly from Grothendieck’s original paper [3] together with some input from [8], [9] and [14].
We first define the algebraic de Rham cohomology of a smooth complex algebraic variety using
hypercohomology. Grothendieck’s Theorem says that this coincides with the analytic de Rham
cohomology. Hence, for smooth complex varieties, the algebraic de Rham, analytic de Rham
and complex singular cohomology all coincide.

Finally, Section 5 deals with the Hodge theory of compact, Kähler manifolds and thus, if the
reader prefers, smooth projective complex varieties in particular, using input from [8], [9] and [4],
[5], [6], [7]. We see how the use of results from analysis leads to the Hodge Theorem and Hodge
decomposition for the cohomology of compact, Kähler manifolds. Then we will demonstrate in
which ways we can utilise algebraic methods along with results of the two preceding sections to
approximate these theorems. In this context, we define Hodge structures, the Hodge filtration
and the Hodge to de Rham spectral sequence and exhibit some of their properties. Finally, we
conclude the essay by briefly presenting some nice results concerning the behaviour of the Hodge
decomposition under small deformations of the complex structure on a smooth manifold.

Throughout, we assume basic results from algebraic geometry, complex geometry and homo-
logical algebra. We choose though to state basic definitions and lemmas, when they are con-
sidered absolutely central or appear often, as we feel that this approach makes the text more
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self-contained and is honest to the reader. This justifies the existence of Section 2, along with
some introductory/foundational subsections in the next sections. For more details or any om-
missions, the reader can look at [2], [11], [12], [8] or [9]. We also assume that the notation we
have used is reasonably standard and thus choose not to give relevant explanations, unless a
new notion is being introduced.

Acknowledgements I would like to deeply thank Prof. Ian Grojnowski for supervising me in
this essay and introducing me to these really nice pieces of mathematics. He has been extremely
helpful and willing to meet and discuss my questions throughout. I am really grateful for all
our interaction, which led me to study and understand these amazing ideas, and his support in
general.
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2 Coherent Sheaves and their Cohomology

In this short section we will mention several definitions and propositions without proofs which
will be used in the rest of the essay. These will range from very basic and easy to show to quite
hard. We will give references throughout. As one might expect, contrary to its title maybe, this
section is not quite coherent.

2.1 Coherent sheaves: Basic definitions, properties and operations

It is probably unjust to omit the definition of a coherent sheaf and this is how we begin.

Definition 2.1.1. (Coherent Sheaf) Let (X,OX) be a ringed space. Then an OX -module
F will be called a coherent sheaf on X if locally it admits a presentation

OpX −→ O
q
X −→ F −→ 0

where p, q are non-negative integers and the sequence is exact. Here OpX stands for the direct
sum of p copies of OX .

We also say that a sheaf of rings F on X is coherent if it is coherent when considered as
an F-module (i.e. if it satisfies the above definition for the ringed space (X,F)).

In what follows in this section, all sheaves will be OX -modules for a ringed space (X,OX).
Set O = OX for brevity. The next proposition gives an account of the main properties of coher-
ent sheaves.

Proposition 2.1.2. 1. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of sheaves.
Then if two of them are coherent, so is the third.
2. If φ : F −→ G is a morphism between coherent sheaves, then the kernel, image and cokernel
φ are coherent.

Proof See [2, no 13, Theorems 1 & 2]. �

As a corollary of this proposition, we may obtain further properties, given in the following
proposition, which treats some sheaf operations.

Proposition 2.1.3. 1. A direct sum of coherent sheaves is coherent.
2. If F ,G are coherent, so is the sheaf F ⊗O G.
3. If F is coherent and G any sheaf, then for all x ∈ X, HomO(F ,G)x is isomorphic to
HomOx(Fx,Gx).
4. If F ,G are coherent, so is the sheaf HomO(F ,G).

Proof See [2, no 13 & 14]. �

We now state a fact about coherent sheaves on projective varieties, which will be of use later
on.

Lemma 2.1.4. Let X a complex projective variety and F a coherent sheaf on X. Then
there exist integers p ≥ 0 and n ∈ Z and a surjection OX(n)p −→ F −→ 0.

The proof of the Lemma relies on the known fact that coherent sheaves on projective vari-
eties have a particularly nice structure. For a more detailed discussion, the interested reader
can look at [12, pp. 56-62].
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Examples 2.1.5.
1. Trivially for any ringed space (X,OX), the structure sheaf OX is coherent.
2. (The sheaves O(n)) Let X = Pr(C), O = OX its structure sheaf and n ∈ Z. Let also
U = {Ui} be the standard open cover of X by r+ 1 affine sets, Oi = O|Ui and σij : Oi|Ui∩Uj −→
Oj |Ui∩Uj the sheaf morphism given by multiplication by Xn

j /X
n
i . Then the maps σij are iso-

morphisms and moreover they satisfy the cocycle condition σij ◦ σjk = σik over Ui ∩ Uj ∩ Uk.
So we may glue the sheaves Oi with respect to these isomorphisms to obtain a new sheaf O(n).
Since locally O(n) and O are the same, it follows that O(n) is coherent.
These sheaves admit also an alternative description: Let π : Cr+1 \ 0 −→ Pr(C) be the natural
projection. Then we may define O(n) by O(n)(U) = {homogeneous regular functions on π−1(U)
of degree n} for every open subset U of Pr(C).
Finally, it is easy to see that these sheaves are invertible and correspond thus to line bundles on
projective space. We will later see what their cohomology is and they will come up in many of
the proofs, which is why we give their explicit definition.
3. (The sheaves F(n)) Let X ⊂ Pr(C) a projective variety and OX its structure sheaf. Denote
OX(n) = OPr(C)(n)|X . Then if F is a sheaf on X, we define the sheaf F(n) = F ⊗OX

OX(n).
By the above Propositions, we see that if F is coherent, so is F(n).

2.2 Cohomology of projective space

Here we state two results without proof about the cohomology of complex projective space
X = Pr(C) with coefficients in the line bundles O(n) (see Examples 2.1.5.) and sheafs of p-
forms Ωp

X .

Lemma 2.2.1. 1. H i(X,O(n)) = 0 unless i = 0 or r.
2. H0(X,O(n)) = {f ∈ C[X0, ..., Xr] : f is homogeneous of degree n}.
3. Hr(X,O(n)) = {f ∈ C[X−1

0 , ..., X−1
r ]X−1

0 ... X−1
r : f is homogeneous of degree n}.

Lemma 2.2.2. Hq(X,Ωp
X) = 0 if p 6= q and otherwise Hq(X,Ωp

X) = C.

We assume throughout that the reader is familiar with all the definitions related to sheaf coho-
mology, both in terms of derived functors and the more concrete setup of Čech cohomology, as
well as with Leray’s theorem and how it can be applied to algebraic varieties. For details and
the actual computations of the above, we refer the interested reader to [11, Chapter III] and
[12].

2.3 Finite dimensionality of cohomology groups and vanishing theorems

Theorem 2.3.1. Let X be a projective variety and F a coherent sheaf on X. Then:
1. The cohomology groups H i(X,F) are finite dimensional as complex vector spaces.
2. There exists n0 ∈ Z such that H i(X,F(n)) = 0 for i > 0 and n ≥ n0.

Theorem 2.3.2. (Serre’s vanishing principle) Let X be an affine variety and F a coherent
sheaf on X. Then H i(X,F) = 0 for all i > 0.

Theorem 2.3.3. (Special case of Grothendieck’s vanishing theorem) Let X be a variety of
dimension d and F a sheaf of abelian groups on X. Then H i(X,F) = 0 for all i > d.

For more details and more general/complete statements of the above theorems and proofs,
the reader may look at [11, Chapter III].
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3 Serre’s GAGA

3.1 Introduction

In this section, we will present the basic results in Jean-Pierre Serre’s famous paper “Géométrie
Algébrique et Géométrie Analytique”, commonly abbreviated as GAGA (we have been and will
be using this abbreviation throughout this whole essay). The essence of the basic theorem first
proved in GAGA is that it gives a strong connection between analytic and algebraic proper-
ties of complex projective varieties and shows that to a certain extent the two viewpoints are
equivalent and yield the same results. We will refer to this interchangeably as the GAGA The-
orem/Principle or just GAGA.

We will mainly follow the exposition in Serre’s paper, exhibiting and proving the absolutely
necessary results and lemmas that lead to the main theorem and give the corresponding refer-
ences, whenever a proof is omitted. We will also present some applications of GAGA (for this
see also in the next chapters), as well as some neat results that give relations between analytic
and algebraic properties of complex varieties and suit this general framework.

3.2 The basics: Definitions, notions and properties

In this section, we will give the basic definitions that we will need in what follows. We will also
state essential properties, some of which we will also prove. While many will be very basic, we
still state them for the sake of completeness and self-containment, at least at a conceptual level
(when not technical).

For the definition of an algebraic variety, we stick to the one given by Serre and thus refer
the reader to [2, no 34]. However, it is not difficult to see that everything which follows still
goes through in more generality for schemes of finite type over C.

Definition 3.2.1. (Analytic set) We say that a subset U of an affine space Cn is analytic
if it is locally given by the vanishing of finitely many holomorphic functions, i.e. if for every
x ∈ U there exists a neighbourhood W of x and functions f1, ..., fk holomorphic on W such that
U ∩W = {z ∈W : f1(z) = ... = fk(z) = 0}.

It is clear that U comes equipped with a natural sheaf HU of germs of holomorphic functions
on it, if we view it as a subspace of Cn. More precisely, let A(U) denote the sheaf of germs of
holomorphic functions on Cn whose sections over an open W are exactly those functions which
are zero on W ∩U . This is a sheaf of ideals of the sheaf H of germs of holomorphic functions on
Cn. Then HU is the quotient sheaf H/A(U). So we see that holomorphic functions on U come
from restricting holomorphing functions on Cn with the obvious identification (when restrictions
are equal), as one would expect.

Definition 3.2.2. (Holomorphic map between analytic sets) Let U ⊆ Cr, V ⊆ Cs be two
analytic sets. Then a map f : U −→ V is holomorphic if it is continuous and transforms the
sheaf HV into the sheaf HU , i.e. for any g ∈ HV,f(x) we have g ◦ f ∈ HU,x.

Definition 3.2.3. (Analytic isomorphism) Let U ⊆ Cr, V ⊆ Cs be two analytic sets. A
map f : U −→ V is an analytic isomorphism if it is holomorphic and admits a holomorphic
inverse f−1.

Having given these definitions, we proceed to generalise them slightly.
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Definition 3.2.4. (Analytic space) Let X be a topological space together with a subsheaf
HX of the sheaf on X of germs of complex-valued functions. We will say that (X,HX) is an
analytic space if the following hold:
1. X is locally an analytic set, i.e. for every x ∈ X there exists a neighbourhood U of x such
that W with the topology and the sheaf induced by those on X is isomorphic to an analytic
set V with the topology and sheaf defined as above. This isomorphism is understood as an
isomorphism between locally ringed spaces.
2. X is Hausdorff.

Definition 3.2.5. (Analytic sheaf) Let (X,HX) be an analytic space. An analytic sheaf
F on X is just a sheaf of HX -modules.

Now we may give analogous definitions as above in the obvious way in order to make sense
of holomorphic maps and isomorphisms between analytic spaces, which we omit. Also, if Y is
a closed analytic subspace of an analytic space X, we may define the analytic sheaf A(Y ) as in
the above and identify HY with the quotient HX/A(Y ) as before. The sheaves HX and A(Y )
are coherent, as shown in the next Lemma.

Lemma 3.2.6. Let (X,HX) be an analytic space and Y ⊆ X a closed analytic subspace.
Then HX is a coherent sheaf of rings and A(Y ) is a coherent analytic sheaf.

Proof The proof of this Lemma makes use of the
Oka Coherence Theorem: If U ⊆ Cn is open, then HU is a coherent sheaf of rings.
This together with a result of H. Cartan establish the Lemma when X is an open subset of Cn.
The local nature of the statement allows us to assume that X is a closed analytic subset of an
open set U ⊆ Cn. Then by our earlier identification HX = HU/A(X) and the above we get
that HU is a coherent sheaf of rings and A(X) is a coherent sheaf of ideals of HU . Hence HX
is coherent, using elementary properties of coherent sheaves (see [2] for more detail). The proof
of the statement about A(Y ) is similar. �

Remark We see that the proof given above is essentially a sketch - reduction to the case
of an open subset of Cn. This is the significant part of the proof, which we take for granted
assuming the two theorems by Oka and Cartan.

Having gone through this chain of definitions and seen that the sheaves we will be interested in
are coherent, we proceed to show how we can associate an analytic space Xan to an algebraic
variety X over the complex numbers and also an analytic sheaf Fan on Xan to an algebraic
sheaf F on X.

Construction of Xan Let U = {Ui} be a cover of X by affine open subsets, that is every
Ui is isomorphic to a Zariski closed subset Vi of some affine space Cn. Since polynomials are
holomorphic functions, we see that Vi is an analytic set and hence we may transport the analytic
structure of Vi to Ui via these isomorphisms by requiring they become analytic isomorphisms.
In this way, it is clear (and trivial to check the Hausdorffness axiom) that we can endow X with
the structure of an analytic space (Xan,HXan).

Remarks 1. We see by the construction that the analytic topology on Xan is finer than the
Zariski topology on X, i.e. the map idX : Xan −→ X is continuous, and is also the least fine
analytic topology such that all regular functions on Zariski open subsets of X remain continuous.
2. In more generality, if X is a scheme of finite type over C, let U = {Ui} be an open cover, such
that Ui ∼= Spec(Ai) where Ai is an algebra of finite type of C. Then Ai = C[X1, ..., Xn]/(f1, ..., fr)
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where the fj are polynomials in the variables X1, ..., Xn and hence holomorphic functions. So
their zero locus is an analytic set Uani . Glueing these analytic sets, we obtain the complex an-
alytic space Xan associated to X (this is not necessarily Hausdorff, see 3. below). We see now
that, instead of the identity map in 1., we have a continuous map φ : Xan −→ X which maps
Xan bijectively to the set of closed points of X.
3. We state some basic properties of the relation between X and Xan. We do this for X a
scheme of finite type over C. We have: X separated ⇔ Xan Hausdorff, X connected ⇔ Xan

connected, X reduced ⇔ Xan reduced, X smooth ⇔ Xan complex manifold, X proper over C
⇔ Xan compact.

Construction of Fan Consider the continuous map idX : Xan −→ X. Let F ′ = idX
−1(F)

denote the inverse image sheaf of F under this map. Similarly, we have the sheaf OX ′ on Xan.
Then the sheaf Fan = F ′ ⊗OX

′HXan is called the analytic sheaf on Xan associated to F .

Remark We see that Fan is a sheaf of HXan-modules, so indeed an analytic sheaf, accord-
ing to Definition 3.2.5. Also, as we would naturally expect, OXan = HXan .

The inclusion OX ′ −→ HXan gives rise to a canonical sheaf morphism α : F ′ −→ Fan.
We notice now that every algebraic morphism of OX -modules φ : F −→ G gives rise to a mor-
phism of OX ′-modules φ′ : F ′ −→ G′ and then, upon tensoring with HXan , to a morphism
φan : Fan −→ Gan. Hence analytification F 7→ Fan is a covariant functor. We now prove some
of its properties.

Proposition 3.2.7. 1. The functor F 7→ Fan is exact.
2. For every algebraic sheaf F , the morphism α : F ′ −→ Fan is injective.
3. If F is a coherent algebraic sheaf, Fan is a coherent analytic sheaf.

Proof Set O = OX and H = HXan = Oan for brevity. Suppose F1 −→ F2 −→ F3 is an exact
sequence of algebraic sheaves on X, then the same is true for the sequence F1

′ −→ F2
′ −→ F3

′.
Now, we know that the pair of rings (Hx,Ox) is a flat couple and hence in particular Hx is
Ox-flat (for a proof and more details, look at [1, no 6]). Therefore, tensoring with H over O
(note that the stalks O′x and Ox are equal) preserves exactness whence the sequence

F1
′⊗O′H −→ F2

′⊗O′H −→ F3
′⊗O′H

is exact, which finishes the proof of 1.
The proof of 2 follows in a similar fashion from the same fact about flatness of the couple
(Hx,Ox).
We proceed to the proof of 3. Let Om denote the direct sum of m copies of O. Since F is
coherent, we have an exact sequence Op −→ Oq −→ F −→ 0, where the sheaves are restricted
to a Zariski open set U . By 1, we get an exact sequence (recall Oan = H)

Hp −→ Hq −→ Fan −→ 0

valid on U , which is open in the analytic topology (recall the analytic topology is finer than the
Zariski topology). Since by Lemma 3.2.6 H is coherent, we conclude that Fan is coherent, as
desired (cf. Section 2 or [2]). �

We finish this introductory session by stating another property of the analytification functor:
its commutativity with the extension by zero functor. Let Y be a Zariski closed subvariety of
an algebraic variety X and F a coherent algebraic sheaf on Y . We can extend F by zero on
X \Y to obtain a coherent algebraic sheaf FX on X and then a coherent analytic sheaf (FX)an

on Xan. Since Fan is a coherent analytic sheaf on Y an which is a closed subspace of Xan we
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can run the same procedure to obtain a coherent analytic sheaf (Fan)X
an

on Xan. We then have

Proposition 3.2.8. [1, Proposition 11] The sheaves (FX)an and (Fan)X are canonically iso-
morphic.

Having said all the above preliminaries, this section is completed and we are now in a posi-
tion to state GAGA and discuss its proof and applications.

3.3 Statement of GAGA

We state the GAGA principle/correspondence, as first written by Serre in his paper.

Theorem 3.3. (GAGA) Let X be a projective variety over C and Xan the associated com-
plex analytic space. If F is a coherent algebraic sheaf on X, let Fan denote the corresponding
(coherent) analytic sheaf. Then the following are true:

• 1. For every coherent algebraic sheaf F on X and every integer q ≥ 0 we have a canonical
isomorphism on cohomology Hq(X,F) ∼= Hq(Xan,Fan).

• 2. If F ,G are two coherent algebraic sheaves on X, every analytic sheaf morphism from
Fan to Gan comes from a unique algebraic sheaf morphism from F to G.

• 3. Every coherent analytic sheaf E on Xan is isomorphic to Fan for some coherent algebraic
sheaf F on X uniquely determined up to isomorphism.

Remark We note that Statements 2 & 3 together give an equivalence between the categories
of coherent algebraic sheaves on X and coherent analytic sheaves on Xan.

In the next sections of this essay, we will mostly make use of the first Statement in the GAGA
theorem, namely the invariance of cohomology. We choose thus to present a complete proof of
1, while giving a brief outline of the proofs of 2 and 3 (this holds true especially for the proof of
3, where we omit a lengthy proof of a theorem of Cartan).

3.4 Proof of GAGA (3.3.1.)

We will construct a natural homomorphism ε : Hq(X,F) −→ Hq(Xan,Fan).
We claim that it is an isomorphism when X is projective and F is coherent (†).

Step 1: Construction of the map ε
We do this in full generality, i.e. for X an algebraic variety and F any algebraic sheaf on X,
following Serre.
Recall that the identity map idX : Xan −→ X is continuous (by definition of Xan). For any
Zariski open subset U ⊆ X and s a section of F over U , we may view s as a section s′ of the
inverse image sheaf F ′ = idX

−1(F) on Xan over Uan. Then we obtain a section ε(s) = s′ ⊗ 1 of
Fan = F ′ ⊗H over Uan. We thus have a map

ε : Γ(U,F) −→ Γ(Uan,Fan)

It is not difficult to see that this map induces a map on cohomology, using the setup of Čech
cohomology. If U = {Ui} is a finite cover of X by Zariski open subsets, then Uan := {Uian} is a
corresponding cover of Xan by open subsets. For all combinations of indices i0, i1, ..., iq we have
then

ε : Γ(Ui0 ∩ ... ∩ Uiq ,F) −→ Γ(Uani0 ∩ ... ∩ U
an
iq ,F

an)
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Hence we get homomorphisms between the corresponding groups of Čech q−cochains

ε : Cq(U ,F) −→ Cq(Uan,Fan)

Now it is easy to notice that these maps commute with the Čech differential d and therefore
they induce homomorphisms

ε : Hq(U ,F) −→ Hq(Uan,Fan)

So taking the direct limit over open covers with respect to refinement or noticing that a cover
by affine open subsets of X is a Leray cover, we finally obtain maps

ε : Hq(X,F) −→ Hq(Xan,Fan)

as desired.
We note that the naturality of this construction ensures that the constructed homomorphisms
satisfy all functorial properties we would expect them to.

Step 2: Reduction to the case of projective space Pr(C)
Since X is projective, there exists a closed embedding i : X −→ Pr(C) into complex projective
space. We may identify F with the sheaf on Pr(C) obtained by extending it by zero outside X,
thus viewing F as a coherent sheaf on Pr(C) supported on X. With this identification, we know
that closed embeddings leave cohomology invariant (see [2, no 5, no 26] or [12]) and we therefore
have for all q ≥ 0 : Hq(X,F) = Hq(Pr(C),F) and Hq(Xan,Fan) = Hq(Pr(C)an,Fan), where
for the last equality to make perfect sense we have used the fact that analytification and exten-
sion by zero of a sheaf “commute” as sheaf operations and thus made the obvious identification
up to canonical isomorphism (cf. Proposition 3.2.8.). Since the constructed maps in Step 1 are
functorial, the following diagram commutes:

Hq(X,F)
ε−−−−→ Hq(Xan,Fan)

∼=
x x∼=

Hq(Pr(C),F)
ε−−−−→ Hq(Pr(C)an,Fan)

From this, it is now clear that it is sufficient to prove our claim for the case X = Pr(C) only.

Step 3: Proof of (†) for the structure sheaf O = OPr(C)

We set X = Pr(C).
For q = 0 it is a well-known fact that the only global sections of O, Oan are constants and hence
H0(X,O) = H0(Xan,Oan) = C, as desired.
For q > 0, we know that Hq(X,O) = 0. Now, by Dolbeault’s Theorem, we have Hq(Xan,Oan)
∼= Hϑ̄

0,q(Xan) = 0 (this is a known fact, proved also in Proposition 5.2.8.). So, we are done.

Step 4: Proof of (†) for the twisted structure sheaf O(n)
Again setting X = Pr(C), we prove the claim by induction on r. For r = 0 there is nothing to
prove.
Now let H be a non-zero linear form on the homogeneous coordinates X0, ..., Xr, whose zero
locus defines a hyperplane E. Then we have an exact sequence:

0 −→ O(−1) −→ O −→ OE −→ 0

where the map O(−1) −→ O is multiplication by H and the map O −→ OE is just the restriction
homomorphism. By tensoring with O(n) we obtain another exact sequence:

0 −→ O(n− 1) −→ O(n) −→ OE(n) −→ 0

11



Taking the long exact sequence of cohomology corresponding to this short exact sequence and
exploiting again the functorial properties of the maps defined in Step 1, we get the following
commutative diagram:

... −→ Hq(X,O(n− 1)) −→ Hq(X,O(n)) −→ Hq(X,OE(n)) −→ Hq+1(X,O(n− 1)) −→ ...

ε

y ε

y ε

y ε

y
... −→ Hq(Xan,O(n− 1)

an
) −→ Hq(Xan,O(n)

an
) −→ Hq(Xan,OE(n)

an
) −→ Hq+1(Xan,O(n− 1)

an
) −→ ...

Clearly E is isomorphic to Pr−1(C) and hence by the inductive hypothesis, the vertical ar-
rows ε : Hq(X,O(n)) −→ Hq(Xan,O(n)an) are isomorphisms for all q ≥ 0 and integers n.
Applying the Five Lemma, we conclude that our claim is true for O(n) if and only if it is true
for O(n− 1). Since by Step 3 the claim holds for n = 0, it holds for all n and we are done.

Step 5: Proof of (†) for every coherent algebraic sheaf F
Set as usual X = Pr(C). We will establish the claim by descending induction on q. We can
initiate the induction from any q > 2r as then we know that both Hq(X,F) and Hq(Xan,Fan)
are equal to zero. It is a fact (recall Lemma 2.1.4.) that there exists an exact sequence of
coherent algebraic sheaves

0 −→ A −→ B −→ F −→ 0

where B is a direct sum of sheaves isomorphic to O(n) for some integer n. So by Step 4, (†)
holds for B. Passing now to the long exact sequence of cohomology and again exploiting the
functorial nature of the map ε we get a commutative diagram:

... −→ Hq(X,A) −→ Hq(X,B) −→ Hq(X,F) −→ Hq+1(X,A) −→ Hq+1(X,B) −→ ...

ε1

y ε2

y ε3

y ε4

y ε5

y
... −→ Hq(Xan,Aan) −→ Hq(Xan,Ban) −→ Hq(Xan,Fan) −→ Hq+1(Xan,Aan) −→ Hq+1(Xan,Ban) −→ ...

Since (†) holds for B the maps ε2, ε5 are isomorphisms. By induction, so is the map ε4. An
application of one of the two Four Lemmas yields thus that ε3 is surjective. Since F was
arbitrary, the same applies to the coherent sheaf A and therefore ε1 is also surjective. Now
an application of the other Four Lemma shows that ε3 is injective. Combining these two we
obtain that ε3 is an isomorphism, as desired. So Step 5 is completed and so is the proof of (†). �

Remarks At this point we just make some comments on the proof. We see that Step 1 is
fairly natural and quite clearly motivated by the definitions of all the related objects. Step 2
makes use of a standard fact about cohomology to facilitate the rest of the discussion. The
fact that every coherent algebraic sheaf is isomorphic to a quotient of a direct sum of twisted
structure sheaves leads us to proceed to Steps 3 and 4 and is central to the proof of the last
step, which concludes the proof.

3.5 Proof of GAGA (3.3.2.)

Set O = OX and H = HXan for brevity.
Let A = Hom(F ,G) be the homomorphism sheaf from F to G. Then by applying the analytifica-
tion functor, we may obtain a morphism A −→ Hom(Fan,Gan) =: B. More precisely, if f ∈ Ax
is a germ of a homomorphism from F to G, we get a germ of a homomorphism fan from Fan to
Gan. This map f 7→ fan gives an O′-linear morphism of the sheaf A′ into the sheaf B. Finally,
applying the functor ⊗O′H we obtain a morphism ι : Aan −→ B.

Claim ι : Aan −→ B is an isomorphism.
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Proof For x ∈ X we have by Proposition 3.1.3./3 of the Introduction that Ax = Hom(Fx,Gx)
and hence Aanx = Hom(Fx,Gx) ⊗Hx, where the functors ⊗ and Hom are applied over the ring
Ox = O′x.
Similarly, Fan is coherent and therefore Bx = Hom(Fx ⊗ Hx,Gx ⊗ Hx), the functor ⊗ applied
over Ox and the functor Hom over Hx (recall the appropriate equalities of stalks of algebraic
and the corresponding analytic sheafs).
Now we observe that the morphism

ιx : Hom(Fx,Gx)⊗Hx −→ Hom(Fx ⊗Hx,Gx ⊗Hx)

is in fact an isomorphism. This is a consequence of the fact that the pair (Hx,Ox) is a flat
couple and [1, Proposition 21]. For a more detailed account, see [1, Proposition 21]. So the
proof of the claim is complete.

Having shown this, the rest of the proof is easy. Consider the homomorphisms

H0(X,A)
ε−→ H0(Xan,Aan)

ι−→ H0(Xan,B)

Since the global sections of A (respectively B) are algebraic morphisms from F to G (respectively
analytic morphisms from Aan to Ban) and for f ∈ H0(X,A) we have ι ◦ ε(f) = fan, (3.3.2.) is
reduced to showing that the composition ι ◦ ε is an isomorphism. But this now is evident, as ε
is an isomorphism by (3.3.1.) (A is coherent by Proposition 2.1.3./4 of the Introduction) and
so is ι by our claim above. So we are done and (3.3.2.) is proved.

3.6 Sketch proof of GAGA (3.3.3.)

We first establish the uniqueness of F . We see that it is a simple consequence of Statement 2 of
the GAGA Theorem.
Suppose that F and G are two coherent algebraic sheaves satisfying Fan ∼= E and Gan ∼= E .
Then we have an isomorphism φ : Fan −→ Gan. By (3.3.2) we get that there exists an algebraic
sheaf morphism ψ : F −→ G such that φ = ψan. Let K and C be the kernel and cokernel of ψ
respectively. Then we get an exact sequence

0 −→ K −→ F ψ−→ G −→ C −→ 0

Since analytification is exact, we get another exact sequence

0 −→ Kan −→ Fan φ=ψan

−−−−→ Gan −→ Can −→ 0

Since φ is an isomorphism we obtain that Kan = Can = 0. But this implies that K = C = 0
by an application of Proposition 3.2.7./2. Therefore, we get that φ is an isomorphism, which
proves uniqueness.

We press on to establish existence.

Step 1: Reduction to the case of projective space Pr(C)
As in Step 2 in the proof of (3.3.1.), let i : X −→ Pr(C) be a closed embedding of X into
complex projective space. Set Y = Pr(C) for brevity. Let also E be a coherent analytic sheaf
on Xan. If the Statement we seek to prove is true for projective space, then there exists a
coherent algebraic sheaf G on Pr(C) such that the coherent sheaf EY is isomorphic to Gan. Let
I = I(X) be the coherent sheaf of ideals defined by the variety X. Let f ∈ Ix and φ the
endomorphism of Gx given by multiplication by f . Since E is supported on X, it is clear that
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the endomorphism φan of Gxan = ExY = Ex is equal to zero. The same is thus true (cf. Propo-
sition 3.2.7./2) for φ and therefore I · G = 0. This in turn implies that G is the extension by
zero of some coherent algebraic sheaf F on X, i.e. G = FY . Hence, by Proposition 3.2.8. we
obtain EY ∼= Gan = (FY )an ∼= (Fan)Y , which by restriction to X gives the desired isomorphism
E ∼= Fan. So we are done and it suffices to prove the Statement when X = Pr(C).

From now on we assume that X stands for the complex projective space Pr(C). The proof
will be by induction on r.

Step 2: Cartan’s Theorems A and B
IfM is any analytic sheaf on X, we may define for any integer n the twisted analytic sheafM(n)
in exactly the same way as the twisted algebraic sheaf O(n): Let U = {Ui} be the standard open
cover of X by r+1 affine sets. Then multiplication by Xj

n/Xi
n is an isomorphism of the sheaves

M|Ui and M|Uj restricted to Ui ∩ Uj . These isomorphisms satisfy the appropriate cocycle con-
dition, so we can reglue them to obtain the sheaf M(n). Clearly M(n) is coherent when M is,
being locally isomorphic to M. Also, we have as in the algebraic case M(n) = M ⊗HH(n),
where H = HX . Finally for an algebraic sheaf F , Fan(n) = F(n)an.

We now state an appropriate version of Cartan’s Theorems A and B, omitting their proofs
(we refer the interested reader to [1, no 16]). The statement is the same to be found there. A
more general version for compact complex manifolds can be found in [8, p. 700].

Theorem A Let L a hyperplane of Pr(C) and A a coherent analytic sheaf on L. Then
Hq(Lan,A(n)) = 0 for all q > 0 and n sufficiently large.

Theorem B Let M be a coherent analytic sheaf on X = Pr(C). Then there exists n(M) ∈ Z
such that, for all n ≥ n(M) and all x ∈ X, the Hx-module M(n)x is generated by elements of
H0(Xan,M(n)), i.e. M(n) is spanned by its global sections.

Given the inductive hypothesis (notice L ∼= Pr−1(C)) and Statement 3.3.1., Theorem A is actu-
ally fairly easy to show as it reduces to the analogous vanishing theorem for coherent algebraic
sheaves on projective space by Serre (cf. Theorem 2.3.1./2). Theorem A is used in the proof of
Theorem B in Serre’s paper and this is the only reason it appears in this exposition. Theorem
B is the core of the proof of 3.3.3. We will see that the rest of the proof bears no significant
difficulties.

Step 3: Proof of (3.3.3.) for projective space
Let E be a coherent analytic sheaf on X = Pr(C). As usual, H = HX . By Theorem B, we get
that for some integer n, E(n) is isomorphic to a quotient sheaf of the sheaf Hp (direct sum of
p copies of H), taking into account also the fact that H0(Xan,M(n)) has finite dimension as a
complex vector space. Hence by the definition of the twisted sheaf it follows that E is isomorphic
to a quotient sheaf of H(−n)p. Setting L0 = O(−n)p we obtain an exact sequence

0 −→ A −→ Lan0 −→ E −→ 0

where A is a coherent analytic sheaf. Repeating this procedure for A we may find a coherent
algebraic sheaf L1 and a surjection Lan1 −→ A. So we get an exact sequence

Lan1
g−→ Lan0 −→ E −→ 0

Now by (3.3.2.) there exists an algebraic morphism f : L1 −→ L0 such that g = fan. So, if F
is the cokernel of f , we have an exact sequence

L1
f−→ L0 −→ F −→ 0
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and by applying the exact analytification functor an exact sequence

Lan1
g−→ Lan0 −→ Fan −→ 0

Comparing with the above we see that E is isomorphic to Fan and since F is a coherent algebraic
sheaf, the proof is complete.

Remark We have named this a sketch proof, even though we have just omitted the proof
of Theorem B in the form stated. However, the proof of Theorem B is quite long and probably
constitutes the hardest part of the whole proof, which otherwise is not particularly hard.

3.7 Applications of GAGA and some theorems

We now proceed to exhibit a few applications of GAGA as a brief illustration of its power and
elegance. We will also state and prove some results which fit well in the interplay between
algebraic and analytic properties, but do not necessarily follow from GAGA or use it.

We begin by stating without proof some neat results relating properties of the Zariski and
analytic topology. These can be found in Serre’s paper [1] (we refer the reader there for their
proofs as well). Except for their elegance, they appear because they will be useful in applications
of Chow’s Theorem.

Proposition 3.7.1. If f : X −→ Y is a regular map between algebraic varieties, then the
analytic closure and Zariski closure of f(X) are equal.

Proposition 3.7.2. Let X,Y be two algebraic varieties and f : X −→ Y a holomorphic
map from X to Y . If the graph of f is a subvariety of X × Y , then f : X −→ Y is a regular
map.

We continue by proving the well-known theorem of Chow.

Theorem 3.7.3. (Chow) Every closed analytic subset of complex projective space is an al-
gebraic variety.

Proof Set Y = Pr(C). Suppose that X is a closed analytic subset of Y an. By a theorem
of H. Cartan, the analytic sheaf HX = HY /A(X) on Yan is coherent and is supported on X.
Hence by Statement 3 of GAGA, HX = Fan for some coherent algebraic sheaf F on Y . Now,
the supports of F and Fan are clearly equal. Hence, since the support of F is Zariski closed in
Y , as F is coherent, we deduce that X is Zariski closed in Y and hence algebraic. �

Remark We see that the proof of Chow’s Theorem was quite easy, given all our earlier work
and the strength of the GAGA Theorem.

An elegant corollary of Chow’s Theorem is the following special case:

Corollary 3.7.4. Every projective complex manifold is algebraic.

The following are two applications of Chow’s Theorem.

Proposition 3.7.5. If X is a complex algebraic variety, every compact analytic subset X ′ ⊆ X
is algebraic.
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Proof We make use of the following fact (originally a result of Chow, cf. proof of [1, Proposition
6]):
There exists a projective variety Y , a Zariski open and dense subset U ⊆ Y and a surjective
regular map f : U −→ X whose graph T is Zariski closed in X × Y .
Set T ′ = T ∩ (X ′ × Y ). X ′, Y are compact (Y is projective) and T is closed (it is Zariski closed
and the analytic topology is finer) so we obtain that T ′ is compact. Hence if pr2 : T′ −→ Y is
the projection onto the second factor, Y ′ = pr2(T′) is a compact subset of Y . Now notice that
Y ′ = f−1(X ′) and hence Y ′ is an analytic subset of U and therefore of Y . Now Chow’s Theorem
shows that Y ′ is a closed subvariety of Y . We are now in position to apply Proposition 3.7.1.
to the regular map f : Y ′ −→ X. From this we conclude that X ′ = f(Y ′) is Zariski closed in
X, i.e. algebraic, and we are done. �

Proposition 3.7.6. If f : X −→ Y is a holomorphic map from a compact algebraic vari-
ety X to an algebraic variety Y , then f is regular.

Proof Let T be the graph of f in X × Y . Then f being holomorphic implies that T is a
compact analytic subset of X × Y . Hence by the previous Proposition 3.7.5., we get that T is
in fact algebraic. Now an application of Proposition 3.7.2. shows that f is regular and we are
done. �

Remarks We have closely followed Serre’s original exposition in the above. We have sys-
tematically omitted the exponent “an” and always used the adjective “Zariski” when we refer
to the Zariski topology. Hopefully there is no confusion for the reader and the way we view our
objects (algebraic or analytic) is clear from the context.

We will see that another application of the GAGA principle will appear in the next section
about Grothendieck’s algebraic de Rham Theorem.
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4 Grothendieck’s algebraic de Rham Theorem

4.1 Hypercohomology: Definition and basic facts

In order to state and discuss Grothendieck’s algebraic de Rham Theorem, it will be of use to give
the basic definitions and properties of hypercohomology. We will follow closely the exposition in
[8]. We will thus present the more concrete Čech setup of hypercohomology, which very much
resembles the setup of classical Čech cohomology. For a treatment using injective resolutions
and derived functors, we refer the interested reader to [9]. Of course, as usual, the two theories
can be shown to be equivalent. A fair bit of spectral sequences will be used as well. The reader
is encouraged to look at Section 5.3, which contains a brief account of the theory.

Definition Hypercohomology is a natural generalization of sheaf cohomology to complexes
of sheaves.
Let X be a topological space. Let (F•, d) be a (bounded below) complex of sheaves of abelian
groups on X (d ◦ d = 0)

F0 d−→ ...
d−→ Fp d−→ Fp+1 d−→ ...

To this complex of sheaves we may associate the cohomology sheaves Hq = Hq(F•) in a natural
way (see [8, pp. 445-446] for details). Now let U = {Uα} be an open cover of X and Cp(U ,Fq) the
group of Čech p-cochains with values in Fq. Then the two operators (δ is the Čech differential)

δ : Cp(U ,Fq) −→ Cp+1(U ,Fq)

d : Cp(U ,Fq) −→ Cp(U ,Fq+1)

satisfy the identities δ2 = d2 = 0, dδ + δd = 0. Thus we obtain a bigraded complex Cp,q =
Cp(U ,Fq) with differentials δ, d. Let (C•, D), where D = δ+d, be the associated single complex.
A refinement U ′ of U induces maps

Cp(U ,Fq) −→ Cp(U ′,Fq)

H∗(C•(U)) −→ H∗(C•(U ′))

Then we may define the hypercohomology groups Hn(X,F•) as the direct limit over refine-
ments of open covers

H∗(X,F•) = lim−→ H∗(C•(U), D)

Fact 1 If a map j : A• −→ B• between complexes of sheaves induces isomorphisms on the
cohomology sheaves j∗ : Hq(A•) −→ Hq(B•) (we then say that j is a quasi-isomorphism),
then it also induces an isomorphism j∗ : H∗(X,A•) −→ H∗(X,B•) on hypercohomology. That
is, quasi-isomorphisms leave hypercohomology invariant.

Fact 2 We know that there are two spectral sequences ′E, ′′E associated to the double complex
Cp,q = Cp(U ,Fq) (cf. Section 5.3. for more details and basic properties). It is easy to see that
they behave well with respect to refinements of open covers and so by taking the direct limit we
obtain two spectral sequences ′E, ′′E which converge to H∗(X,F•). Their second terms are

′Ep,q2 = Hp(X,Hq(F•))

′′Ep,q2 = Hq
d(Hp(X,F•))
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4.2 The analytic and algebraic de Rham Theorems

First we establish some standard notation.
Let X be a non-singular scheme of finite type over C, (Ω•X , d) the complex of sheaves of regular
differential forms and (Ω•Xan , d) the complex of sheaves of holomorphic differential forms. Also,
as usual, let C be the constant sheaf of stalk C on Xan.

Definition 4.2.1. (Algebraic de Rham Cohomology) The algebraic de Rham cohomology
H∗dR(X) of X is defined by the hypercohomology groups H∗dR(X) = H∗(X,Ω•X).

We also have the classical analytic de Rham cohomology of X: H∗dR(Xan) = H∗(Xan,Ω•Xan).

We now give a short demonstration of the analytic de Rham Theorem and its proof.
The holomorphic Poincaré lemma shows that C −→ Ω•Xan is a resolution of the constant sheaf
C. This implies that if we let C• be the complex C −→ 0 −→ 0 −→ ... with C in degree zero,
we obtain a quasi-isomorphism C• −→ Ω•Xan and therefore by Fact 1 of the previous section

H∗(Xan,C•) ∼= H∗(Xan,Ω•Xan) = H∗dR(Xan)

Noticing now that clearly H∗(Xan,C) equals H∗(Xan,C•) and since this is further equal to the
singular complex cohomology of Xan, H∗(Xan,C) we finally obtain the

Theorem 4.2.2. (Analytic de Rham Theorem) H∗(Xan,C) = H∗(Xan,C) ∼= H∗dR(Xan).

We have a canonical homomorphism of the algebraic into the analytic de Rham cohomology
H∗dR(X) −→ H∗dR(Xan) which comes from viewing algebraic forms as holomorphic forms. We
are now in a position to state a form of Grothendieck’s algebraic de Rham Theorem (as appeared
in his original paper [3]).

Theorem 4.2.3. (Grothendieck’s algebraic de Rham Theorem) Let X be a non-singular scheme
of finite type over C. Then the following are true:

1. The canonical homomorphism H∗dR(X) −→ H∗dR(Xan) ∼= H∗(Xan,C) is an isomorphism.

2. If X is affine, H∗(Γ(X,Ω•X), d) ∼= H∗dR(Xan) ∼= H∗(Xan,C).

The moral behind Grothendieck’s algebraic de Rham Theorem as well as its value lie in the
observation that the right hand side in both Statements 1 & 2 is an inherent topological quan-
tity, being the singular complex cohomology of Xan, whereas the left hand side comprises purely
algebraic information. Often, the left hand side of Statement 2 can be explicitly calculated. So,
we can compute the singular cohomology of a smooth variety by computing the hypercohomol-
ogy of its algebraic de Rham complex. This is yet another example of how formal calculus can
be useful in algebraic situations.

Examples 4.2.4. 1. (Punctured line) Let X = Spec(R) where R = C[z, 1
(z−z1)...(z−zk) ]. This

is the affine line A1
C with k punctures at the points z1, ..., zk. Then by (4.2.3./2) the de Rham

cohomology is equal to the cohomology of the complex of global differential forms. A differential
form in Ω1

X can be written as f(z)
g(z)dz where g has zeros possibly only at the zi. Then it is clear

that the first cohomology group has a basis given by the forms 1
z−zidz (everything else is clearly

exact) and hence dim H1(X) = k.
2. (Elliptic curve) Let X be a complex elliptic curve. X has dimension 1 and hence Ωp

X = 0
for all p ≥ 2. To compute the algebraic de Rham cohomology, we will make use of the spectral
sequence ′′Ep,q2 . We firstly calculate the terms Hp(X,Ωq

X) for p, q ≤ 1. Since X is projec-
tive, we know that H0(X,Ω0

X) = C. Moreover g(X) = 1 and thus H0(X,Ω1
X) = Cω for a

18



differential form ω. By Serre duality, we obtain also H1(X,Ω0
X) = H0(X,Ω1

X)∨ = (Cω)∨ and
H1(X,Ω1

X) = H0(X,Ω0
X)∨ = C∨. It is clear then that the spectral sequence degenerates at

′′Ep,q1 as all the E1−differentials are zero. Hence ′′Ep,q∞ = ′′E1
p,q = Hq(X,Ωp

X) and since the
spectral sequence converges to H∗dR(X), we obtain that dim H i

dR(X) = 1, 2, 1 for i = 0, 1, 2,
which agrees to the singular complex cohomology, as Xan is a complex torus.

4.3 Proof of Grothendieck’s algebraic de Rham Theorem

Step 1: Proof that (4.2.3./2) implies (4.2.3./1)
Suppose that X is affine. Recall Fact 2 from the introductory section 4.1. The second hyperco-
homology spectral sequence for H∗dR(X) reads

′′Ep,q1 = Hq(X,Ωp
X) =⇒ H∗dR(X)

Since the sheaves Ωp
X are coherent, Serre’s vanishing principle (Theorem 2.3.2.) shows that

Hq(X,Ωp
X) = 0 for all q > 0. This implies that the spectral sequence degenerates at its second

term ′′E2 and we evidently get that H∗dR(X) is the cohomology of the global section complex of
the complex of sheaves (Ω•X , d) ([9, Proposition 4.32]), i.e.

H∗dR(X) = H∗(Γ(X,Ω•X), d)

This establishes the claim when X is affine (in fact we see that the two Statements of the theo-
rem are then equivalent).

Now suppose that X is as in the statement of (4.2.3). Take an open affine cover U = {Ui}
of X and let Uan be the corresponding cover of Xan. (We note that since by Serre’s vanishing
principle all coherent sheaves on the Ui are acyclic, the cover is a Leray cover and thus computes
Čech (sheaf) cohomology. By GAGA, the same holds true for the cover Uan of Xan.) As before,
write now Hq for the cohomology sheaf associated to the presheaf V 7−→ Hq

dR(V ) on X and
similarly Han,q for V 7−→ Hq

dR(V ) on Xan. By Fact 2 from Section 4.1, there are convergent
spectral sequences on X and Xan

′E
p,q
2 = Hp(U ,Hq) =⇒ H∗dR(X)

′E
an,p,q
2 = Hp(Uan,Han,q) =⇒ H∗dR(Xan)

These are related via the canonical maps

Hp(U ,Hq) −→ Hp(Uan,Han,q) (1)

H∗dR(X) −→ H∗dR(Xan) (2)

Hence, to show that map (2) is an isomorphism it suffices to show that the second terms of the
two Čech-to-sheaf spectral sequences are isomorphic via the canonical map (1).
But, these terms involve cohomology groups over sets of the form Ui0 ∩ ...∩Uiq and we may thus
assume that X is contained in an affine scheme and is therefore separated. X being separated
implies that the intersections Ui0 ∩ ... ∩ Uiq are affine. We treated precisely this case earlier
and so indeed (1) is an isomorphism and so is (2). We are done and the claim is shown. Thus
Statement (4.2.3./1) follows in general from (4.2.3./2).

Comment If X is projective, then we can prove (4.2.3./1) straight away without assuming
(4.2.3./2). This can be done by using the spectral sequence ′′Ep,q1 for the algebraic and holo-
morphic de Rham complexes and applying GAGA to obtain the result immediately.
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Step 2: Preparatory results
Before delving into the proof we discuss the ingredients that will be of use.
We state the following result without proof.

Theorem 4.3.1. (Corollary of Hironaka’s Theorem on resolution of singularities) There ex-
ists a resolution of singularities f : (Y ′, D′, X ′) −→ (Y,D,X). This means that there exists a
proper morphism of projective varieties Y ′ −→ Y such that f |X′ : X ′ −→ X is an isomorphism,
Y ′ is non-singular and D′ is a normal crossing divisor.

Now, let Y an be a complex manifold and D a normal crossing divisor on Y an. The fact that D is
a normal crossing divisor is necessary for the proof of Theorem 4.3.2., which we omit. We thus
do not give the definition of a normal crossing divisor either (intuitively, it is an intersection of
hyperplanes locally). The interested reader can look at [9, Definition 8.15] or [8, p.449]. Set
U = Y an −D.
Let Ωp

Y an(nD) be the sheaf of meromorphic p-forms which are holomorphic on U and have polar
singularities of order at most n along D. Then set

Ωp
Y an(∞D) = lim−→ Ωp

Y an(nD) =
⋃

n≥0
Ωp
Y an(nD)

and Ω•Y an(∞D) to be the associated complex of sheaves with the natural exterior differential.
Let j : U ↪→ Y an be the inclusion map. If, as usual, ApU is the sheaf of smooth p-forms on U and
A•U the associated complex, then set A•Y an(∞D) = j∗A•U , the complex of sheaves of C∞ forms
on Y an allowing arbitrary singularities along D.
We then have a natural inclusion

Ω•Y an(∞D) ⊂ A•Y an(∞D)

of complexes, which is compatible with the exterior differential, hence a morphism of complexes
of sheaves.

Theorem 4.3.2. ([8, Lemma, p. 450]) The inclusion Ω•Y an(∞D) ↪→ A•Y an(∞D) is a quasi-
isomorphism.

We will also make use of the following Lemma.

Lemma 4.3.3. There is a canonical isomorphism

H∗(U,C) = H∗(Y an,Ω•Y an(∞D))

Proof By Theorem 4.3.2. and Fact 1 of 4.1., we get that

H∗(Y an,Ω•Y an(∞D)) ∼= H∗(Y an,A•Y an(∞D)) (1)

We know that the sheaves ApY an(∞D)) are fine (by a standard partition of unity argument) and
therefore acyclic (their higher cohomology vanishes, i.e. Hq(Y an,ApY an(∞D)) = 0 for all q > 0).
From this, it follows that

H∗(Y an,A•Y an(∞D)) = H∗(Γ(Y an,A•Y an(∞D)), d) (2)

By the definition of A•Y an(∞D) it follows that Γ(Y an,A•Y an(∞D)) = Γ(U,A•U ). Now, the
standard smooth de Rham’s theorem yields

H∗(Γ(U,A•U ), d) = H∗(U,C) (3)
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So, combining (1),(2) and (3), we obtain the desired isomorphism. �

Comment The role of the complex Ω•Y an(∞D) could also be played equally well by the loga-
rithmic complex Ω•Y an(∞log D), which is the complex of differential forms that are holomorphic
on X and have logarithmic singularities along D. The interested reader can see [8] or [9] for
more details.

Step 3: Proof of Statement (4.2.3./2)
Choose a projective closure ι : X ↪→ Y . Let D be the divisor D = Y −X.
By Theorem 4.3.1., we may choose a resolution of singularities f : (Y ′, D′, X ′) −→ (Y,D,X).
This enables us to work with the pair (Y ′, D′) rather than the pair (Y,D). Equivalently we may
assume that Y is a non-singular projective variety and D is a normal crossing divisor. Note that
smoothness of Y implies that Y an has the structure of a complex manifold.
Now by commutativity of cohomology with direct limits and by applying GAGA (it is easy to
check that the sheaves Ωp

Y an(nD) are coherent, even locally free) we get

Hq(Y an,Ωp
Y an(∞D)) = lim−→ Hq(Y an,Ωp

Y an(nD)) = lim−→ Hq(Y,Ωp
Y (nD))

The sheaves Ωp
Y (nD) are defined in the natural analogous way and are exactly what one would

expect.
Now, an application of Theorem 2.3.1./2 shows that for n sufficiently large Hq(Y,Ωp

Y (nD)) = 0
for all q > 0. This implies by the above that Hq(Y an,Ωp

Y an(∞D)) = 0 for q > 0. An alternative
way to see this would be to notice straight away without using GAGA that for n sufficiently
large Hq(Y an,Ωp

Y an(nD)) = 0 for all q > 0 follows from applying Cartan’s Theorem B from
Section 3.6.
Therefore (recall Fact 2 from Section 4.1), the hypercohomology spectral sequence

′′Ep,q2 = Hq
d(Hp(Y an,Ω•Y an(∞D))) =⇒ H∗(Y an,Ω•Y an(∞D))

degenerates at the second term and, as we have seen multiple times before, it follows that

H∗(Y an,Ω•Y an(∞D)) ∼= H∗(Γ(Y an,Ω•Y an(∞D)), d)

So, taking into account Lemma 4.3.3., we see that the left hand side of the above isomorphism
equals H∗(Xan,C) and we are left with the task of showing that the right hand side is H∗dR(X).
Recall that in Step 1 we proved that H∗dR(X) = H∗(Γ(X,Ω•X), d) when X is affine. We have
similarly as before

H∗(Γ(Y an,Ω•Y an(∞D)), d) = lim−→ H∗(Γ(Y an,Ω•Y an(nD)), d) = lim−→ H∗(Γ(Y,Ω•Y (nD)), d)

So it will suffice to show that the restriction map

lim−→ Γ(Y,Ω•Y (nD)) −→ Γ(X,Ω•X)

is an isomorphism.
Injectivity of this map is clear, while the surjectivity follows immediately from Serre’s theorem
on extensions of sections over projective varieties. So we are done and the proof is complete.

21



5 Hodge Theory

Our main reference for this section will be Voisin’s book [9]. Many of our results will concern
compact, Kähler manifolds. Hence they will also apply to smooth projective complex varieties,
which are the objects we are primarily interested in.

5.1 The Hodge Theorem

In this introduction we will remind of the reader of some basic definitions and results, as well
as some standard notation that will be used in the next sections. All this can be found in [8] or
[9]. We prove a small selection of the exhibited results.

Let X be a compact complex manifold. We can equip X with a Hermitian metric ds2. Let
ω be the associated (1, 1) form. ds2 induces a Hermitian inner product on all tensor bundles
T ∗(p,q)(X) which we denote by ( , ). Let Φ = ωn/n! be the associated volume form.

Definition 5.1.1. (Hodge ∗-operator) Define the Hodge star operator ∗ : Ap,qX −→ A
n−p,n−q
X by

requiring that for all open subsets U ⊆ X the following identity holds for all ψ, η ∈ Ap,qX

(ψ(z), η(z))Φ(z) = ψ(z) ∧ ∗η(z)

For ψ, η ∈ Ap,q(X) we can define a global L2 inner product

(ψ, η) =

∫
X

(ψ(z), η(z))Φ(z) =

∫
X
ψ(z) ∧ ∗η(z)

Also, we may define the formal adjoint operator ϑ̄∗ by ϑ̄∗ = −∗ ϑ̄∗. ϑ∗ is defined in the same
way. Then d∗ = (ϑ+ ϑ̄)∗ = ϑ∗ + ϑ̄∗.

It is easy to show (simple algebraic manipulation) that ∗ ∗ ψ = (−1)p+qψ and that (ϑ̄, ϑ̄∗)
and (ϑ, ϑ∗) are pairs of adjoint operators with respect to the L2 product just defined. We have
now the following standard definition.

Definition 5.1.2. (Laplacians) The d, ϑ, ϑ̄-Laplacians ∆d : ArX −→ ArX , ∆ϑ,∆ϑ̄ : Ap,qX −→ Ap,qX
are defined by

∆d = dd∗ + d∗d

∆ϑ = ϑϑ∗ + ϑ∗ϑ

∆ϑ̄ = ϑ̄ϑ̄∗ + ϑ̄∗ϑ̄

Let us denote ∆ = ∆ϑ̄, as this is the Laplacian we will mainly be concerned with in this section.

Definition 5.1.3. (ϑ̄-harmonic form) ψ ∈ Ap,qX is said to be ϑ̄-harmonic if ∆ψ = ∆ϑ̄ψ = 0.
Let Hp,q = Hp,q

ϑ̄
= ker∆ denote this space of harmonic forms.

Similar definitions apply to the other two operators (we denote the space of d-harmonic n-
forms by Hr).

We can check again by simple algebraic manipulations that all the operators defined so far
satisfy certain good properties: The Laplacians are self-adjoint operators. Moreover for a (p, q)-
form ψ we have ∆ψ = 0 if and only if ϑ̄ψ = ϑ̄∗ψ = 0.

A very important property of the Laplacians is that they are elliptic differential opera-
tors of order 2 on the compact manifold X (cf. [8, Chapter 5]).
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An application of a general theorem about elliptic differential operators on compact manifolds
([9, Theorem 5.22]) to the Laplacian ∆ yields the following result, which we call the Hodge
Theorem.

Theorem 5.1.4. (Hodge Theorem, cf. [8, p. 84]) 1. Hp,q is a finite-dimensional complex
vector space.
2. There is an orthogonal decomposition

Ap,qX = Hp,q ⊕∆(Ap,qX )

From this Theorem we can draw the following Corollary.

Corollary 5.1.5. (Hodge decomposition on forms) There exist orthogonal decomposi-
tions

Zp,qX = Hp,q ⊕ ϑ̄Ap,q−1
X

Ap,qX = Hp,q ⊕ ϑ̄Ap,q−1
X ⊕ ϑ̄∗Ap,q+1

X

Proof Let ψ ∈ Hp,q. For η ∈ Ap,q−1
X we have (ψ, ϑ̄η) = (ϑ̄∗ψ, η) = (0, η) = 0. Similarly, for

η ∈ Ap,q+1
X , (ψ, ϑ̄∗η) = (ϑ̄ψ, η) = (0, η) = 0. Hence, by the Hodge Theorem we obtain

ϑ̄Ap,q−1
X + ϑ̄∗Ap,q+1

X ⊆ ∆(Ap,qX )

But for any ψ ∈ Hp,q we have ∆ψ = ϑ̄(ϑ̄∗ψ) + ϑ̄∗(ϑ̄ψ) ∈ ϑ̄Ap,q−1
X + ϑ̄∗Ap,q+1

X , so in fact

ϑ̄Ap,q−1
X + ϑ̄∗Ap,q+1

X = ∆(Ap,qX ) (†)

Now for ψ ∈ Ap,q−1
X , η ∈ Ap,q+1

X we have (ϑ̄ψ, ϑ̄∗η) = (ϑ̄2ψ, η) = (0, η) = 0, so decomposition (†)
is orthogonal as desired.
Finally, for any ϑ̄∗ψ ∈ ϑ̄∗Ap,q+1

X which is ϑ̄-closed, we have 0 = (ϑ̄ϑ̄∗ψ,ψ) = (ϑ̄∗ψ, ϑ̄∗ψ) and

hence ϑ̄∗ψ = 0. This immediately implies the orthogonal decomposition Zp,qX = Hp,q ⊕ ϑ̄Ap,q−1
X

and the proof is complete. �

Remark We presented this proof mainly as an example of the general reasoning in the proofs
of most of the results we have stated without proof.

Theorem 5.1.6. We have an isomorphism

Hq(X,Ωp
X) ∼= Hp,q

Proof Using Dolbeault’s Theorem and the previous Corollary, we obtain

Hq(X,Ωp
X) ∼= Hp,q

ϑ̄
(X) = Zp,qX /ϑ̄Ap,q−1

X
∼= Hp,q

So we are done. �

Remarks 1. We see straight away that Hq(X,Ωp
X) are finite dimensional complex vector spaces.

We already know this when X is a smooth projective variety by applying GAGA (Statement
3.3.3./1) and recalling Theorem 2.3.1./1.
2. The natural analogues of Theorem 5.1.4. and Corollary 5.1.5. for the other two operators
are true in exactly the same fashion.
3. All the above results hold true in more generality, namely if we allow our sheaves to have
coefficients in any holomorphic vector bundle E on X endowed with a Hermitian metric. We
can repeat the whole procedure and constructions with the operator ϑ̄E . For more details, see
[9, p. 122].
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5.2 The Hodge decomposition for compact, Kähler manifolds

We will now see how to obtain a nice decomposition of the singular complex cohomology groups
of X as well as how to define an integral Hodge structure of weight r on the integral cohomology
group Hr(X,Z), when X is a compact, Kähler manifold.

Let X be compact and Kähler, with ω its Kähler (1, 1)-form, coming from a Hermitian metric
ds2. Define the operator L : Ap,qX −→ A

p+1,q+1
X by η 7→ η ∧ ω. Also let Λ : Ap,qX −→ A

p−1,q−1
X be

the operator Λ = L∗ = (−1)p+q ∗ L∗. We may check that Λ is the adjoint operator of L with
respect to the L2 inner product defined in the preceding section.

We have the following important identities.

Theorem 5.2.1. (Kähler identities) If [A,B] = AB − BA denotes the commutator of A and
B, then

[Λ, ϑ̄] = −iϑ∗, [Λ, ϑ] = iϑ̄∗

Proof Since we know that ω is a real form, so is the operator Λ and therefore one identity is
true if and only if the other is true.
To prove the first identity, we first prove it for compactly supported forms on Cn with the
standard Euclidean metric. Then we use the fact that the Kähler metric on X osculates to the
standard Euclidean metric to order 2 to deduce the identity at every point. For more details,
see [8, pp 111-114]. �

With these two identities at hand, we can show the following fact about the different Laplacians
defined on X.

Theorem 5.2.2. Let X be a compact, Kähler manifold. Then

∆ϑ = ∆ϑ̄ =
1

2
∆d

Proof This is again just a simple formal algebraic manipulation. We just substitute the adjoints
of ϑ, ϑ̄ in the Laplacians using the Kähler identities.
Since Λϑ− ϑΛ = iϑ̄∗, we get

i(ϑϑ̄∗ + ϑ̄∗ϑ) = ϑΛϑ− ϑ2Λ + Λϑ2 − ϑΛϑ = 0

Hence also by conjugation ϑ̄ϑ∗ + ϑ∗ϑ̄ = 0 and so

∆d = ∆ϑ + ∆ϑ̄ + ϑϑ̄∗ + ϑ̄∗ϑ+ ϑ̄ϑ∗ + ϑ∗ϑ̄ = ∆ϑ + ∆ϑ̄

Now we have

−i∆ϑ = ϑ(Λϑ̄− ϑ̄Λ) + (Λϑ̄− ϑ̄Λ)ϑ = ϑΛϑ̄− ϑϑ̄Λ + Λϑ̄ϑ− ϑ̄Λϑ

i∆ϑ̄ = ϑ̄(Λϑ− ϑΛ) + (Λϑ− ϑΛ)ϑ̄ = ϑ̄Λϑ− ϑ̄ϑΛ + Λϑϑ̄− ϑΛϑ̄

We deduce that ∆ϑ = ∆ϑ̄ = 1
2∆d, which concludes the proof. �

This theorem has many immediate but important corollaries, which will eventually lead to the
Hodge decomposition. A first point to make is that we do not need to specify which Laplacian
we are referring to when we treat harmonic forms. In the rest of this section we will be referring
to the operator d unless stated otherwise.

Corollary 5.2.3. If X is Kähler, ∆d preserves bidegree, i.e. ∆d(A
p,q
X ) ⊆ Ap,qX . Alternatively,
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we say that ∆d is bihomogeneous.

Proof ∆d = 2∆ϑ̄ and ∆ϑ̄ is clearly bihomogeneous. �

This also obviously implies the next two statements.

Corollary 5.2.4. The components ψp,q of a harmonic form ψ ∈ ArX are harmonic.

Corollary 5.2.5. If Hp,q is the set of (p, q)-forms which are d-harmonic, we have a direct
sum decomposition

Hr =
⊕
p+q=r

Hp,q (∗)

From this decomposition we will extract the Hodge decomposition.
By the analog of the Hodge Theorem 5.1.4. for the operator d we deduce that there is an
isomorphism

Hr
dR(X) ∼= Hr (1)

Let Hp,q(X) be the set of classes of (p + q)-forms that can be represented by a closed form of
type (p, q).
We show now that we also have an isomorphism

Hp,q(X) ∼= Hp,q (2)

Clearly Hp,q ⊆ Hp,q(X) by our work so far. So we need to show the reverse inclusion. Let
ω be a closed form of type (p, q). By Theorems 5.1.4./2 and 5.2.2. we may uniquely write
ω = α+∆β, where α is harmonic, hence closed. Then ∆β = dd∗β+d∗dβ must be closed. Hence
dd∗dβ = 0 which in turn implies that 0 = (dd∗dβ, dβ) = (d∗dβ, d∗dβ) and so d∗dβ = 0. There-
fore ω = α+ dd∗β and ω, α represent the same class in Hp,q(X). Therefore Hp,q(X) ⊆ Hp,q. So
we are done and we have shown that (2) is true.

Finally, notice that since ∆ϑ = ∆ϑ̄ we get Hq,p = Hp,q (3).
Combining all the above ( (∗), (1), (2), (3) ) together with the standard smooth de Rham the-
orem, which gives that Hr(X,C) ∼= Hr

dR(X), we obtain the celebrated Hodge decomposition,
which was the one we were aiming for.

Theorem 5.2.6. (Hodge decomposition) If X is a compact, Kähler manifold, we have the
following decomposition for the complex cohomology

Hr(X,C) ∼=
⊕
p+q=r

Hp,q(X)

Hq,p(X) = Hp,q(X)

In addition, ∆d = 2∆ϑ̄ gives that Hp,qd = Hp,q
ϑ̄

and therefore by Theorem 5.1.6. Hp,q(X) ∼=
Hq(X,Ωp

X), which gives rise to the decomposition

Hr(X,C) ∼=
⊕
p+q=r

Hq(X,Ωp
X)

Remark Even though we started with a specific Kähler metric on X, we note that the Hodge
decomposition which we obtained does not in fact depend on the choice of Kähler metric, as is
clear by the definition of the pieces Hp,q(X).
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Set now br = dimCH
r(X,C), the r-th Betti number, and hp,q = dimCH

p,q(X) = dimCH
q(X,Ωp

X),
the Hodge numbers.
Then, noting that ∗ : Hp,q −→ Hn−p,n−q is a conjugate linear isomorphism, we conclude that
these quantities satisfy the relations

hp,q = hq,p, hp,q = hn−p,n−q, br =
∑
p+q=r

hp,q

We now present two simple applications of the Hodge decomposition.

Proposition 5.2.7. The Betti numbers b2r+1 of odd degree are even.

Proof b2r+1 =
∑

j≤r h
j,2r+1−j +

∑
j≥r+1 h

j,2r+1−j =
∑

j≤r h
j,2r+1−j +

∑
j≥r+1 h

2r+1−j,j =

2[
∑

j≤r h
j,2r+1−j ] and hence b2r+1 is even, as desired. �

Proposition 5.2.8. Let X = Pn(C). Then Hq(X,Ωp
X) = Hp,q

ϑ̄
(X) equals C if p = q and

0 if p 6= q.

Proof It is a standard fact (recall e.g. the standard decomposition of Pn(C) as a cell com-
plex) that H2r+1(X,Z) = 0 and H2r(X,Z) = Z. Since by the universal coefficient theorem we
have Hr(X,C) = Hr(X,Z) ⊗Z C, we get that b2r+1 = 0, b2r = 0. Hence Hp,q

ϑ̄
(X) = 0 for p+ q

odd. Moreover
1 = b2r = hr,r + 2

∑
j<r

hj,2r−j

Therefore we must have
∑

j<r h
j,2r−j = 0⇒ hj,2r−j = 0 for all j < r and hr,r = 1. Thus hp,q = 0

for p 6= q. So we conclude that Hp,q

ϑ̄
(X) = 0 for p 6= q and Hp,p

ϑ̄
(X) ∼= H2p(X,C) ∼= C and we

are done. �

5.3 The Hodge filtration and Hodge to de Rham spectral sequence

We first define the notion of a filtered complex and then give a brief account of the basic defi-
nitions and properties of spectral sequences associated to a filtered complex.

Definition 5.3.1. Let (A•, d) be a complex of abelian groups or sheaves of abelian groups
supported in non-negative degree. We define a decreasing filtration on A• to be a family of
subcomplexes

... ↪→ F pA• ↪→ F p−1A• ↪→ ... ↪→ F 0A• = A•

Then we say that A• together with this filtration is a filtered complex (F pA•, d).

Definition 5.3.2. (Spectral sequence) A spectral sequence is a collection of complexes
(Ep,qr , dr), dr : Ep,qr → Ep+r,q−r+1

r such that Ep,qr+1 is identified with the cohomology of (Ep,qr , dr),

i.e. with ker(dr : Ep,qr → Ep+r,q−r+1
r )/im(dr : Ep−r,q+r−1

r → Ep,qr ).

Definition 5.3.3. We say that a spectral sequence (Ep,qr , dr) degenerates at Er if ∀k ≥ r
we have dk = 0. Then Ep,qr = Ep,q∞ .

In what follows, the filtrations considered will all be finite, i.e. F pA• = 0 for p sufficiently
large. So we assume this is the case throughout, i.e. we always deal with finite filtrations.
Now it is easy to see that a filtration naturally induces a filtration F pH∗(A•) on the cohomology
of A• given by F pH i(A•) = im(H i(F pA•)→ H i(A•)). We set

GrpA• = F pA•/F p+1A•
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GrpHq(A•) = F pHq(A•)/F p+1Hq(A•)

We have now the following important foundational result about the spectral sequence associated
to a filtered complex.

Theorem 5.3.4. ([9, Theorem 8.21] & [9, Lemma 8.24]) Let (F pA•, d) be a filtered complex.
Then there exists a spectral sequence (Ep,qr , dr) with

Ep,q0 = GrpAp+q

Ep,q1 = Hp+q(GrpA•)

Ep,q∞ = Grp(Hp+q(A•))

Moreover, the differential d1 : Ep,q1 → Ep+1,q
1 can be identified with the connection map δ :

Hp+q(GrpA•)→ Hp+q+1(Grp+1A•) which appears in the long exact sequence associated to the
short exact sequence

0 −→ Grp+1A• −→ F pA•/F p+2A• −→ GrpA• −→ 0

We now give two types of filtration on complexes, which will be the main examples we will be
concerned with.

Examples 5.3.5. 1. (The “naive” filtration) Let (A•, d) be a complex of abelian groups.
We set F pA• = A≥p. This is the complex which is zero in degrees smaller than p and equals A•

in degrees ≥ p.

A0 d−−−−→ A1 d−−−−→ ...
d−−−−→ Ap

d−−−−→ Ap+1 d−−−−→ ...x x x x
0 −−−−→ 0 −−−−→ ... −−−−→ Ap

d−−−−→ Ap+1 d−−−−→ ...

2. (The filtration of a double complex) Let (A•,•, d, δ) be a double complex supported in non-
negative degree. Let (A•, D) be the associated simple complex. Recall that this is given by
Ar =

⊕
p+q=r A

p,q, D = d+ δ. Set

F pAr =
⊕

p′+q=r, p′≥p
Ap
′,q

It is easy to see that this indeed gives a filtration of the complex (A•, D).

In the case described in the last example, Theorem 5.3.3. simplifies and we have the following
Proposition.

Proposition 5.3.6. Let (A•, D) be the simple complex associated to the the double com-
plex (A•,•, d, δ). If ′F pAr = ⊕p′+q=r, p′≥p Ap

′,q is the filtration introduced in Example 5.3.5./2,
the spectral sequence ′Ep,qr associated to A• satisfies the following:
1. ′Ep,q0 = Ap,q, d0 = δ.
2. ′Ep,q1 = Hq(Ap,•), and the differential d1 : Hq(Ap,•) → Hq(Ap+1,•) is induced by the mor-
phism of complexes d : Ap,• → Ap+1,•.
3. ′Ep,q2 = H∗(′Ep,q1 , d1) = Hp

d (Hq
δ (A•,•)), where this denotes the cohomology of

... −→ Hq
δ (Ap−1,•)

d−→ Hq
δ (Ap,•)

d−→ Hq
δ (Ap+1,•) −→ ...

Similarly, we have a spectral sequence ′′Ep,qr associated to the filtration ′′F pAr = ⊕p+q′=r, q′≥p Ap,q
′

which has the corresponding properties.
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We will now see how to apply all the above to obtain an analogous result as in the preceding
section.

Let X be a complex manifold and (Ω•X , ϑ) be the holomorphic de Rham complex. This complex

has the “naive” filtration given in Example 5.3.5./1 F pΩ•X = Ω≥pX .

We also have a filtration on the de Rham complex of X

F pArX =
⊕

p′+q=r, p′≥p
Ap
′,q
X

Passing to global sections we obtain the filtration

F pArX =
⊕

p′+q=r, p′≥p
Ap
′,q
X (†)

This induces a filtration on cohomology given by

F pHr(X,C) = F pHr(X,A•X) = ker(F pArX → F pAr+1
X )/im(F pAr−1

X → F pArX) (††)

We know that the complex (Ap,•X , ϑ̄) is a resolution of Ωp
X . It is a fact then that (A•X , d), which

is the single complex associated to the double complex (A•,•X , ϑ, ϑ̄), together with this filtration
is quasi-isomorphic to (Ω•X , d) together with the naive filtration (see [9, Lemma 8.5, p. 201]),
the quasi-isomorphism being between these filtered complexes at all levels of the two filtrations.
That is,

H∗(X,F pA•X) ∼= H∗(X,F pΩ•X) (1)

Hence these filtrations are closely related and to obtain information about the latter we will
examine the former.

Since the sheaves AqX are fine, hence acyclic, by a known theorem the hypercohomology of
(F pA•X , d) is equal to the cohomology of the complex of its global sections (F pA•X , d) (cf. [9,
Proposition 8.12]), i.e.

H∗(X,F pA•X) ∼= H∗(X,F pA•X) (2)

(1) & (2) together imply that we need to examine just the complex (A•X , d) together with the
filtration (†).

Definition 5.3.7. (The Fröhlicher or Hodge to de Rham spectral sequence) The spectral
sequence ′Ep,qr associated to the filtration F p on the de Rham complex of (A•X , d) given by (†)
is called the Fröhlicher or Hodge to de Rham spectral sequence.

Since (A•X , d) is the single complex associated to the double complex (A•,•X , ϑ, ϑ̄) Proposition
5.3.6. applies and we have a very good description of the first terms of the Hodge to de Rham
spectral sequence.

In particular, ′Ep,q1 = Hq(Ap,•X , ϑ̄) and by Dolbeault’s theorem we get that Hq(Ap,•X , ϑ̄) =
Hp,q

ϑ̄
(X) ∼= Hq(X,Ωp

X) and hence ′Ep,q1 = Hq(X,Ωp
X). Moreover, the differential d1 : ′Ep,q1 →

′Ep+1,q
1 is induced by ϑ and is just the map

d = ϑ : Hq(X,Ωp
X) −→ Hq(X,Ωp+1

X )

Suppose now that X is compact Kähler. Then, by the results of the previous section, every
element of Hp,q

ϑ̄
(X) has a ϑ̄-harmonic representative and so, since ∆ϑ = ∆ϑ̄, a ϑ-harmonic and
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hence ϑ-closed representative. This implies that ϑ = 0 on Hp,q

ϑ̄
(X) ∼= Hq(X,Ωp

X) and therefore
d1 = 0. We thus have shown the following.

Theorem 5.3.8. (Degeneracy of the Hodge to de Rham spectral sequence) Let X be a compact,
Kähler manifold. Then the Hodge to de Rham spectral sequence degenerates at the first term
′Ep,q1 and hence ′Ep,q1 = ′Ep,q∞ .

Remark We note that it is not hard to see that Theorem 5.3.8. is equivalent to the exis-
tence of an isomorphism GrpHp+q(X) ∼= Hq(X,Ωp

X). Generally, it is clear from the above that
the former is isomorphic to a quotient of the latter, which reduces the existence of such an
isomorphism to their dimensions being equal. That is, dim′Ep,q∞ ≤ ′E

p,q
1 with equality if and

only if the spectral sequence degenerates at ′E1.

Theorem 5.3.8. is important. We can notice immediately that it gives GrpHp+q(A•X) =
′Ep,q∞ = ′Ep,q1 = Hq(X,Ωp

X). Hence we obtain br =
∑

p+q=r h
p,q, where br is the r-th Betti

number and hp,q = dimC Hq(X,Ωp
X). Therefore, Theorem 5.3.8. is reasonably close to the

actual Hodge decomposition, as stated in Theorem 5.2.6., missing the conjugacy condition, the
symmetry of the Hodge numbers and the decomposition into pieces of the form Hp,q(X) =
F pHp+q(X,C) ∩ F qHp+q(X,C) (see below), instead of Hq(X,Ωp

X).
At this point we mention that (cf. also [9, Proposition 7.5, p. 158]) the filtration (††) induced
by (†) on cohomology coincides with the standard Hodge filtration (see below)

F pHr(X,C) =
⊕

p′+q=r, p′≥p
Hp′,q(X) =

⊕
p′+q=r, p′≥p

Hq(X,Ωp′

X)

In order to prove Theorem 5.3.8. we used results from the harmonic theory of compact, Kähler
manifolds. It is natural to ask whether there is an alternative way of proving this fact.

This can indeed be done, as our earlier work enables us to make use of algebraic methods.
Suppose that X is a smooth projective complex variety (so Xan is a compact, Kähler manifold).
All the sheaves involved are coherent. Hence GAGA shows that the degeneracy of the Hodge
to de Rham spectral sequence of the holomorphic de Rham complex of Xan at the first term
is equivalent to the degeneracy at the first term of the corresponding spectral sequence ′′Ep,qr
(cf. Section 4.1 for the definition) for the algebraic de Rham complex. So we are reduced to an
algebraic computation.

Another nice way of obtaining some of the above in an algebraic manner is to recall what
we have seen in our discussion of Grothendieck’s algebraic de Rham Theorem. The theorem
shows that H∗(X,C) = H∗dR(X) = H∗(X,Ω•X), where everything is in the algebraic setting. The
degeneracy of ′′Ep,qr at the first term will thus yield an isomorphism ′′Ep,q∞ ∼= Hq(X,Ωp

X), whence
similar results among which, also by GAGA, the equality br =

∑
p+q=r h

p,q.

To conclude this section, we define in full generality the notion of an integral Hodge struc-
ture and the associated Hodge filtration, motivated by our work so far.

Definition 5.3.9. An integral Hodge structure of weight r is given by a free abelian
group of finite type VZ, together with a decomposition

VC = VZ ⊗ C =
⊕
p+q=r

V p,q

satisfying V p,q = V q,p.
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Given this Hodge decomposition, we can define the associated Hodge filtration by

F pVC =
⊕

p′+q=r, p′≥p
V p′,q

We can notice that this is a decreasing filtration on VC and we have VC = F pVC ⊕ F r−p+1VC.
Moreover the filtration determines the decomposition by V p,q = F pVC ∩ F qVC.

It is clear now that the Hodge decomposition on the singular cohomology (where we consider
the integral cohomology modulo torsion if needed) of a compact, Kähler manifold X as given
in Theorem 5.2.6. satisfies all these properties and so induces an associated Hodge filtration.
These are the motivation behind the above definitions.

5.4 Deformations of complex structures

In this brief section, we will examine how the Hodge numbers and the Hodge decomposition
behave under small deformations of the complex structure of a compact, Kähler manifold. We
will follow again Voisin [9], mainly by stating the relevant results. The main point will be that
the Hodge numbers are preserved and so does the Hodge decomposition.

Let X , B be complex manifolds and φ : X −→ B a holomorphic map. Let also Xt := φ−1(t) be
the fibre of φ above the point t ∈ B.

Definition 5.4.1. (Family of complex manifolds) φ : X −→ B will be called a family of
complex manifolds if φ is a proper holomorphic submersion.

It is not difficult that under the conditions of the definition, the fibres Xt are complex manifolds,
which we call deformations of X0.
In the following we will assume that there exists a base point 0 ∈ B, which will serve as a point
of reference. We state the following result about local trivialisations of a family of complex
manifolds.

Lemma 5.4.2. Let φ : X −→ B be a family of complex manifolds. Then there exists a
neighbourhood 0 ∈ U ⊆ B and a diffeomorphism T = (T0, φ) : X|φ−1(U) −→ X0 × U such that
the fibres of T0 are complex submanifolds of X .

On the one hand, this result says that the C∞ structure on Xt for t ∈ U is the same, all
these manifolds being diffeomorphic via T . So we can locally view a family of complex mani-
folds equivalently as a deformation of the complex structure on the fixed smooth manifold X0.
Moreover, we see that this family of complex structures on X0, Xt, parametrised by t ∈ U varies
holomorphically with respect to t.

The following semicontinuity theorem is the basic foundational result for the behaviour of the
Hodge numbers and the Hodge decomposition under this type of small deformations.

Theorem 5.4.3. [9, Theorem 9.15, pp. 232-234] Let φ : X −→ B be a family of com-
pact complex manifolds and F a holomorphic vector bundle on X . Then the function t 7→
dim Hq(Xt,F|Xt) is upper semicontinuous, i.e. dim Hq(Xt,F|Xt) ≤ dim Hq(X0,F|X0) for all t
in a neighbourhood of 0.

Corollary 5.4.4. The function t 7→ hp,q(Xt) = dim Hq(Xt,Ω
p
Xt

) is upper semicontinuous.
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With these results at hand, we proceed to show that under small deformations of complex
structure the Hodge numbers remain constant and so does the Hodge decomposition. From now
on we assume that φ : X −→ B is a family of compact complex manifolds and X0 is Kähler.

Proposition 5.4.5. For t close to 0 ∈ B, we have hp,q(Xt) = hp,q(X0). Also the Hodge
to de Rham spectral sequence of Xt degenerates at the first term.

Proof By Corollary 5.4.4. we have hp,q(Xt) ≤ hp,q(X0) for all t sufficiently close to 0. Now,
Hq(Xt,Ω

p
Xt

) = Ep,q1 (Xt), where Ep,qr (Xt) is the Hodge to de Rham spectral sequence of Xt.
We know that dim Ep,q∞ (Xt) ≤ dim Ep,q1 (Xt) with equality if and only if the spectral sequence
degenerates at the E1 (recall the last remark of the previous section). Morever, Ep,q∞ (Xt) =
F pHp+q(Xt)/F

p+1Hp+q(Xt) which implies the equality dim Hr(Xt) =
∑

p+q=r dim Ep,q∞ (Xt).
As we have remarked already, Lemma 5.4.2. implies that Xt is diffeomorphic to X0 and hence
Hr(Xt,C) ∼= Hr(X0,C)⇒ dim Hr(Xt,C) = dim Hr(X0,C) =: br. We have now

br =
∑
p+q=r

dim Ep,q∞ (Xt) ≤
∑
p+q=r

dim Ep,q1 (Xt) =
∑
p+q=r

dim Hq(Xt,Ω
p
Xt

) =

=
∑
p+q=r

hp,q(Xt) ≤
∑
p+q=r

hp,q(X0) = br

where the last equality follows from the Hodge decomposition (5.2.6.). It follows that we must
have equality in all the intermediate inequalities and therefore hp,q(Xt) = hp,q(X0) and also
dim Ep,q∞ (Xt) = dim Ep,q1 (Xt), which give us what we want. �

Proposition 5.4.6. For t close to 0 ∈ B, there exists a decompositionHr(Xt,C) =
⊕

p+q=rH
p,q(Xt),

where Hp,q(Xt) = Hq,p(Xt) and Hp,q(Xt) ∼= Hq(Xt,Ω
p
Xt

).

Proof By the previous Proposition, we get that the subspace F pHr(Xt,C) ⊆ Hr(Xt,C) ∼=
Hr(X0,C) is of dimension independent of t close to 0 and also varies in a C∞ way by Theorem
5.4.7. below. Set Hp,q(Xt) = F pHr(Xt,C) ∩ F qHr(Xt,C). We obtain that the dimension of
Hp,q(Xt) is equal to that of Hp,q(X0), i.e.

dim Hp,q(Xt) = dim Hp,q(X0) = hp,q(X0) = hp,q(Xt) = dim Hq(Xt,Ω
p
Xt

) (1)

By the Hodge decomposition for X0 we have

Hr(X0,C) = F pHr(X0,C)⊕ F q+1Hr(X0,C) (2)

where r = p + q. By continuity, the same holds for t close to 0. This decomposition for Xt

implies that the map Hp,q(Xt) ↪→ F pHr(Xt,C)→ F pHr(Xt,C)/F p+1Hr(Xt,C) ∼= Hq(Xt,Ω
p
Xt

)
is injective, where the last isomorphism is again due to the previous Proposition. So by (1) we
get that this map is in fact an isomorphism, whence Hp,q(Xt) ∼= Hq(Xt,Ω

p
Xt

).
Finally, (2) for t together with the rest of the above give exactly the decomposition

Hr(Xt,C) =
⊕
p+q=r

Hp,q(Xt)

and also it is clear again by continuity that Hp,q(Xt) = Hq,p(Xt). �

Remark In fact, even more is true: Kodaira showed that if X0 is Kähler, then so are all
the fibres Xt for t in a neighbourhood of 0 ∈ B.
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To finish this section and for the sake of completeness, we state a result by Kodaira, which
is the basis for Theorem 5.4.3., and use it to give a proof.

Theorem 5.4.7. [7, Kodaira (1986)] Let φ : X −→ B be a family of compact complex manifolds
and G −→ X a vector bundle. Let ∆ be a relative differential operator acting on G, that is
∆t = ∆Xt : GXt −→ GXt is a differential operator. If each ∆t is elliptic of fixed order, then
t 7→ dim ker∆t is upper semicontinuous, and ker∆t varies in a C∞ way and forms a complex
subbundle of G.

Proof of Theorem 5.4.3. Endow X and F with Hermitian metrics. These induce Her-
mitian metrics on Xt and F|Xt . Now we apply Theorem 5.4.7. to the ϑ̄−Laplacian ∆t that acts
on the sections of A0,q

Xt
(Ft), where Ft is the holomorphic vector bundle associated to F|Xt . But

by the generalised version of Theorem 5.1.6. (recall the remarks at the end of the Section 5.1)
we have that ker∆t = H0,q

ϑ̄
(Ft) ∼= Hq(Xt,F|Xt) and so we are done. �
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