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Abstract

Two players take it in turn to claim edges from a graph G. The first player (“Maker”)
wins if at any point he has claimed s edges at a vertex without the second player
(“Breaker”) having claimed a single edge at that vertex. If, by the end of play, this
does not occur we say that Breaker wins. Our main aim is to show that for every s
there is a graph G in which Maker has a winning strategy.

1. Introduction

In this paper we prove a result concerning a game on graphs that is a natural problem
in the context of combinatorial game theory. The statement of the theorem is as follows:

Theorem 1.1 Suppose that two players (Player 1 - “Maker” and Player 2 - “Breaker”)
take turns to colour edges of a graph. Then, for any integer s > 1 there is a graph G in
which Maker can colour s edges at a vertex before Breaker has coloured any at that vertex.

The background behind this result is that of Maker-Breaker games. We proceed to
give a short, self-contained account of the definitions involved. For additional theory and
motivation see [1].

Definition 1.2 (Maker-Breaker game) Let X be any finite set. By a Maker-Breaker
game on X we mean a collection of subsets of X, H ⊆ P(X), together with the following
rule of play: two players, Maker and Breaker, take turns colouring points of X. Maker
wins if after all the points of X have been coloured, one of the elements of H has been
coloured entirely by him. Otherwise Breaker wins. X is called the board and H the set
of winning lines.

To any game on a board X we may associate a different game, via the following definition:

Definition 1.3 (Shutout game) Maker wins the shutout game with parameter b on
the board X with set of winning lines H if he can colour b points of a winning line in H
without Breaker having played in that line.

For an arbitrary graph G, we consider the Maker-Breaker game, where Maker tries to
colour all the edges incident to a vertex of G: The board is X = E(G) and the set of
winning lines H consists of the edge neighbourhoods of the vertices of G.
We wish to study the associated shutout problem. Thus we are interested in the following:

Definition 1.4 (Shutout game with parameter s) We say that Maker wins the
shutout game with parameter s on a graph G if he colours s edges at a vertex without
Breaker having played at that vertex.

Finding a graph where Maker can win the shutout game with parameter s is very much
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dependent on the density and the distribution of the edges in the graph. A large number
of edges means that Maker can achieve more complex structures faster, but it also gives
room to Breaker to touch as many vertices as possible in a short amount of time.

Observe that on the complete graph Maker cannot win for non-trivial values of s. It
is not difficult to see that Breaker can play in a way such that after an even number
of turns, among all vertices touched by Maker, there is at most one which is untouched
by Breaker, and furthermore, the one vertex has at most one adjacent edge coloured by
Maker. This is done by an easy induction on the number n of rounds played (a round
consists of a turn of both players). During the first round, if Maker colours the edge
xy, Breaker colours edge xz for some z. Suppose the claim is true for n with the only
candidate vertex not touched by Breaker being u together with the edge uv coloured by
Maker. Let S denote the set of vertices touched by Breaker (note that v ∈ S). Let ab be
the edge coloured by Maker at turn 2n+ 1. If a, b do not belong to S∪{u}, then Breaker
colours ua. If one belongs to S ∪ {u} but the other does not, then Breaker plays edge uc
for some c. In both cases it is clear that we arrive at the desired state.
Thus to produce a graph G as stated in Theorem 1.1 one has to exercise a certain mea-
sure of control over both the number of edges in relation to the number of vertices but
also over the geometry of the graph.

In the next section, we proceed to the proof of Theorem 1.1 and investigate some further
properties of these games. Finally, we conclude by drawing a connection with another
class of Maker-Breaker games and formulating some conjectures about the behaviour of
the games described.

2. Main Results

With the definitions above, our main theorem can be restated as follows:

Theorem 1.1 For any s ≥ 1 there exists a graph G such that Maker wins the shutout
game on G with parameter s.

To facilitate our discussion, we introduce a piece of terminology: we call a monochro-
matic K1,s at a vertex v a free s-star if after Breaker’s turn no edge incident to v has
been played by Breaker. We say that if at any point Maker achieves a free s-star, then
he has won the free s-star game on the graph. Clearly winning a free s-star game is the
same as winning the shutout game with parameter s+ 1.

We prove Theorem 1.1 by induction. However, Maker being able to win the shutout
game at a single vertex does not suffice for the inductive step and something more is
required. The key idea that makes the induction work is to strengthen the claim by re-
quiring that Maker wins at multiple vertices. This result takes the following formulation:

Theorem 2.1 For any s ≥ 1, n ≥ 1 there exists a graph G with δ(G) > s such that
Maker can achieve at least n free s-stars at n independent vertices when playing on G.

Clearly Theorem 2.1 implies Theorem 1.1, as the latter is a special case of the former.

We will say that at some stage of play an edge is untouched if it has not been coloured
by Maker or Breaker and similarly for vertices (no edge incident to it has been coloured)
or other structures (e.g. graphs) in the obvious way. For example, a subgraph will be
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untouched if no edges with at least one endpoint in it are coloured.
For technical reasons, we prove a stronger claim by induction on s:

Theorem 2.1* Theorem 2.1 still holds if we demand that Maker can win without satu-
rating a vertex, i.e. without needing to colour all the edges incident to any vertex.

Proof of Theorem 2.1* We induct on s.

Clearly for the base case s = 1 either a large cycle graph or a large collection of dis-
joint triangles suffices. Indeed, in the latter case, Maker colours an edge of an untouched
triangle on every turn, thus creating two new free 1-stars. Breaker has the option of
either playing one of the two adjacent edges in some triangle which Maker has touched,
in which case Maker will have gained a free 1-star at the end of Breaker’s turn, or, other-
wise, Breaker can play in some untouched triangle, in which case Maker will have gained
two free 1-stars at the end of Breaker’s turn. So at the end of each round of play Maker
has gained at least one free 1-star. Taking 4n independent triangles to start with, we
see that Maker can always play in some untouched triangle in his first 2n turns and so
at the end of the 2n-th round, he will have made at least 2n free 1-stars, with at least
half at independent vertices (and Maker has not used up all the edges at any vertex), as
desired.

For the inductive step, assume n is given and suppose that Gk
s denotes a graph where

Maker can make k free s-stars at independent vertices without saturating any vertex
(see Figure 1). Let ImN be disjoint sets of N(≥ 1) independent vertices indexed by

m = 1, ... ,
(|Gk

s |
2s+2

)
. We join each subset of size 2s + 2 of Gk

s to an ImN completely, i.e.
adding an edge joining any two vertices that do not belong to the same graph out of
the two; we call these cross-edges and the resulting graph G̃. Note that the degree
of every vertex in some ImN is 2s + 2, while the degree of the vertices in Gk

s is at least
δ(G)+N > s+1 (recall that by the inductive hypothesis δ(G) > s), so that δ(G̃) > s+1.

Claim For sufficiently large k and N (see end of proof) Maker can make n free (s+ 1)-
stars at n independent vertices of G̃.

This clearly establishes the inductive step and will conclude the proof.

We now present Maker’s strategy for the shutout game on G̃.
Firstly, Maker plays in the Gk

s subcopy of G̃ according to the winning strategy that grants
him k free s-stars at independent vertices. In this way Maker can still win k free s-stars
in G̃, since if there were a chance for Breaker to prevent this in G̃ he could have also
done it in Gk

s by playing an edge at the same vertex he would play on G̃ (note that there
is no point for Breaker to play a cross-edge twice at a vertex and the fact that Maker
does not need to saturate any vertex allows for this).
Suppose hence that after T0 moves by both players Maker has achieved k free s-stars at a
set U of independent vertices of the Gk

s subcopy inside G̃. Let us choose k = l(2s+2) and
partition U into l subsets of cardinality (2s + 2) U1, ... , Ul in any way, for l sufficiently
large (see end). Let I1N , ... , I

l
N denote the sets of independent vertices appended to the

Ui as described above.

Now Maker plays according to the following algorithm (regardless of what Breaker does
in particular):



4 ALEXANDRU CIOBA AND MICHAIL SAVVAS

Step 1 Find a Ui none of whose vertices has been touched by Breaker.
Step 2 Find v ∈ IiN untouched by Breaker.
Step 3 Find a vertex u ∈ Ui which is untouched by Breaker and play the cross-edge vu.
Step 4 Repeat Step 3 (s+ 1) times.
Step 5 Go to Step 1 and repeat 2n times.

Assuming we can iterate this procedure 2n times for l, N large enough (again see end),
we will show that after 2n iterations Maker will have made at least 2n free (s+ 1)-stars.

• Firstly, from the above description it is clear that in each round of play Maker
creates at least one new (s+ 1)-star at some vertex of U .

• Moreover, by the independence properties of the vertices that arise (Ui, I
i
N are

sets of independent vertices and also completely independent from other Uj , I
j
N by

construction), Breaker can never destroy more than one free (s+1)-star in his turn,
since no two such vertices are joined by an edge.

• We now come to a crucial observation: Notice that Maker’s strategy consists of
playing (s+1) times “inside” a pair (Ui, I

i
N ) for 2n choices of such pairs. If Breaker

elects to always destroy the new (s + 1)-star created by Maker in Ui immediately
after it is formed by playing some edge at that vertex, then at the (s + 1)-th
repetition of Step 3 Maker will create two free (s + 1)-stars at once, one inside Ui

and the other at v, as v will have remained untouched by Breaker this whole time
and will be joined with (s+1) vertices of Ui. Therefore, during these (s+1) rounds
of play, there is a round when either Maker creates two free (s+1)-stars or Breaker
does not destroy a free (s+ 1)-star.

These three observations together show that after (s + 1) rounds the number of free
(s + 1)-stars that Maker has achieved increases by at least 1. Clearly thus after 2n it-
erations of this procedure Maker will have achieved at least 2n free (s + 1)-stars in G̃.
These lie inside U and the IiN ’s, so at least half of them will be inside one of the two
and hence independent. This shows that Maker will have achieved n free (s+ 1)-stars at
independent vertices, as wanted.

We remark now that Maker does not saturate any vertex in this process. Clearly any
vertex of Gk

s will not be saturated, as Maker uses at most one cross-edge for each of these
vertices and their degree in G̃ increases by at least N . For the vertices in the ImN ’s Maker
uses at most s+ 1 edges, whereas their degree equals s+ 2.

Hence, in order to complete the proof, we have to pick concrete values for l, N that
allow everything in the above to go through.
We notice that the total number of turns required by the above description (assuming
there is enough space to follow the outlined strategy) equals T = T0 + 4n(s+ 1), since T0
turns are needed so that Maker wins in the subcopy of Gk

s inside G̃ and then 2n(s + 1)
rounds so that Maker achieves the 2n free (s+ 1)-stars. Therefore, if we take l > T + 2n
Maker will be able to find 2n untouched Ui by Breaker (note that independence plays a
role here too). Similarly for N > T + 1 there will always be some vertex of IiN which has
not been touched by Breaker. We also note that for the iteration of Step 3, Maker can
always find consecutively (s + 1) vertices of Ui untouched by Breaker, since they both
start with Ui untouched and |Ui| = 2s+ 2, so Breaker can touch at most (s+ 1) of these
in (s+ 1) rounds of play.
These estimates conclude the proof. �
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Figure 1: An illustration of part of G11
2 .

Theorem 2.1 prompts the following question: how small can the maximal degree of
a graph be for Maker to be able to win the shutout game? Furthermore, how small can
the degree of a vertex in any graph be, whilst allowing Maker to win a free s-star at this
vertex? From now on, when we say that Maker may win a free s-star at a vertex v, we
mean that v belongs to a minimal family of vertices, such that there exists a strategy for
Maker which guarantees that he wins the free s-star game at an element of the family.
By a minimal family we mean a set S of vertices with the following property: if a game
is played requiring Maker to complete a free s-star at any vertex in a specified set, then
for the set S \ {v}, for any v ∈ S, this game is a Breaker win.

Definition 2.2 The Local Shutout Number of a positive integer s, denoted by LS(s),
represents the least maximal degree of a minimal family S, across all graphs, at which
Maker may win a free s-star. Similarly the Global Shutout Number, GS(s) represents the
smallest maximal degree of a graph G where Maker may win a free s-star.

Knowledge of the rate of increase of these numbers may prove essential in determining
strategies for Breaker on certain graphs. As one might hope, the two numbers defined
above coincide.

Lemma 2.3 The Shutout Numbers satisfy LS(s) = GS(s).

Proof We start our proof with the following observation. Suppose Maker wins a free
s-star at a vertex v, in a graph G. Then, the removal of an edge from v cannot prevent
Maker from winning a free (s−1)-star at v (Maker follows the same winning strategy, ex-
cept that he passes if he needs to play the removed edge). Also, note that LS(s) ≤ GS(s).
Suppose G is edge minimal such that we can win the free s-star game on G and we can do
so by realizing the Local Shutout Number at a vertex. Let ∆(G) = m > n = LS(s). Then
every vertex v0 of degree m is surrounded by vertices of degree n only since otherwise
we could remove an edge from v0 and still win the free s-star game (in the same way as
before, just passing instead of playing that edge if need be). Hence, at each such vertex,
we can disconnect an edge as shown in the figure (Figure 2) and still be guaranteed to
win the free s-star game since we are a priori granted that we can do so at a vertex of de-
gree n. Thus we can successively lower the maximal degree to n whence LS(s) = GS(s). �
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Figure 2: Disconnecting an edge.

Since these two quantities coincide we merge the two definitions and what we will simply
call the Shutout Number from now on we denote by σ(s).
Now observe that in the construction in Theorem 2.1* ∆ − δ is potentially quite large.
This is however not typical or necessary in general. The previous proof constructs a
graph in which σ(s) = ∆(G). This, coupled with the simple observation that given a
graph G such that we have ∆ = ∆(G), there is a ∆-regular graph H such that G ≤ H
and the copy of G inside H can be obtained from H by just removing vertices, allows
us to deduce that if we limit ourselves to playing the shutout game on regular graphs,
we do not restrain the generality of the problem. Indeed, regular graphs are extremal
examples, when it comes to winning the shutout game.

Finally, we have the following corollary.

Corollary 2.4 The Shutout Number σ(s) is strictly increasing.

Proof Suppose G is a m-regular graph, where m = σ(s). Run the following algo-
rithm on G: Pick a vertex v0 of degree m. Disconnect an edge from v0 as previously,
changing its degree to m − 1, and leaving the other vertex neighbourhoods unchanged.
Repeat until there are no more vertices of degree m. Then, by an earlier observation, we
can win the free (s− 1)-star game on this new graph, and its maximum degree is m− 1.
So σ(s− 1) ≤ σ(s)− 1. �

3. Conclusions and Open Questions

In order to study quantitative properties of the Shutout Numbers it is useful to introduce
another class of Maker-Breaker games, which are pertinent to the shutout game we have
been examining: For a regular graph G of degree m and a natural number s consider the
Maker-Breaker game with board X = E(G) and set of winning lines H consisting of the
subgraphs of G isomorphic to K1,s (s-stars). We refer to this game as the game on G
with parameters (m, s) or an (m, s)-game on G as a shorthand.

Given a regular graph G of degree m where Maker can achieve a free s-star at a vertex
v, it is clear that he may win the game on G with parameters (m, s + dm−s

2 e) by just
playing at this vertex after winning the free s-star. This strategy might seem crude,
but in most cases a better approach for Maker is not known. Crucial to this strategy
is the rate of increase in the shutout numbers, σ(s), which act as a type of complexity
parameter of the game. For example, in a (7, 6)-game it would work if we knew that
σ(4) ≤ 7. This however remains unknown. It is clear though that the strategy proves
useful for the (7, 5)-game where only a free 2-star is required by Maker for this strategy
to apply and it can be shown that σ(2) = 3. Furthermore, one can give a rudimentary
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lower bound for the Shutout Numbers as follows:

Lemma 3.1 The Shutout Number satisfies σ(s) ≥ 2s− 3.

Proof If Maker achieves a free s-star at a vertex of an m-regular graph, by the strategy
outlined above he can win the game on G with parameters (m, s+dm−s

2 e). This, in turn,
implies that m > 4

3(s+dm−s
2 e). Solving this inequality and noticing that σ(s) is the least

m for which it holds, one obtains that σ(s) ≥ 2s− 3 if s+σ(s) is even and σ(s) ≥ 2s− 1
if s+ σ(s) is odd.
The inequality used above is a simple application of Hall’s theorem, in line with the
pairing strategies for Breaker outlined in [2]. Namely, if m ≤ 4

3(s+ dm−s
2 e), Breaker may

pair each vertex to 2(m− s) + 2 edges, and splitting these into m− s+ 1 different pairs
at each vertex he plays one edge in each pair when Maker plays the other. Then Maker
cannot play more than m− (m− s+ 1) = s− 1 edges at any vertex so Breaker wins the
game with parameters (m, s). �

However, better lower bounds are expected to exist, which will be of more use in practice,
since large Shutout Numbers suggest the existence of strategies for Breaker on graphs of
smaller maximal degree. Hence we formulate the following conjectures:

Conjecture 3.2 There are constants c, r > 0 such that σ(s) ≥ crs.

More weakly, we certainly feel the following should be true:

Conjecture 3.3 There are constants c > 0 and r > 1 such that σ(s) ≥ csr.

It would be of interest to compute small Shutout Numbers. We expect that for the
game on parameters (7, 6) the strategy outlined above will prove useless. In particular:

Conjecture 3.4 The Shutout Number satisfies σ(4) ≥ 8.
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