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Abstract

In this thesis, we develop a virtual cycle approach towards generalized Donaldson-
Thomas theory of Calabi-Yau threefolds. Let o be a stability condition on the bounded
derived category D’(Coh W) of a Calabi-Yau threefold W and M a moduli stack of o-
semistable objects of fixed topological type.

We construct an associated Deligne-Mumford stack M , called the Kirwan partial desin-
gularization of M, with an induced semi-perfect obstruction theory of virtual dimension
zero, and define the generalized Donaldson-Thomas invariant via Kirwan blowups to be the
degree of the virtual cycle [/W]"ir. Examples of applications include Gieseker stability of
coherent sheaves and Bridgeland and polynomial stability of perfect complexes.

When M is a moduli stack of Gieseker semistable sheaves, this is invariant under de-
formations of the complex structure of W. More generally, deformation invariance is true

under appropriate properness assumptions which are expected to hold in all cases.

v
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Chapter 1

Introduction

1.1 Classical Donaldson-Thomas theory

We begin by giving a brief account of classical Donaldson-Thomas (DT) theory and
its main features. Let W be a smooth, projective Calabi-Yau threefold (CY3) over C, i.e.
Ky ~ Ow and dim¢c W = 3.

Counting subvarieties of a given type inside an algebraic variety has been one of the
important themes in algebraic geometry. For example, a smooth cubic surface contains 27
lines [Har77].

Significant advances in string theory in the 1990’s motivated the development of several
mathematical theories of enumerating curves in CY3’s, most notably Gromov-Witten and
DT invariants. These conjecturally capture the same information [MNOPO06] and are also
related to other enumerative theories, such as Stable Pair [PT09], BPS and Gopakumar-Vafa
invariants [KL12, MT16].

DT theory is a sheaf theoretic technique of enumerating curves in W. DT invariants were
first introduced by Thomas in his thesis [Tho00]. The necessary technical tool to achieve this
was provided by the theory of virtual fundamental cycles and perfect obstruction theories,
developed by Li-Tian [LT98] and Behrend-Fantechi [BF97]. One obtains the associated
numerical invariant by integrating against a cycle in the moduli space parametrizing the
geometric objects of interest, e.g. curves or bundles of given topological data.

More precisely, for v € H*(W,Q), let M*(y) be the moduli stack parametrizing
Gieseker semistable sheaves on W of fixed Chern character v. We consider the following

situation.
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Assumption 1.1.1. Every semistable sheaf in M*®3() is stable, i.e. M*3(vy) = M*(7).
We then have the following theorem.

Theorem 1.1.2. [Tho00, HT10] Let M**(y) = M?(y) be as above such that Assump-
tion 1.1.1 holds and denote by M?(~y) its coarse moduli space. Then M?*(v) admits a per-
fect obstruction theory of wvirtual dimension zero and hence a virtual cycle [M?*(y)]"" €

Ao(M?*(v)). The classical Donaldson-Thomas invariant is defined as
DT(M?(7)) := deg[M*(7)]"".

It is invariant under deformation of the complex structure of W.

Example 1.1.3. Let Ig,, be the Hilbert scheme parametrizing subschemes C C W such
that [C] = € Hy(W,Z) and x(Oc) = n. Then every ideal sheaf is stable and hence we
have an associated DT invariant. This is a “virtual” count of curves in W of topological
type (B,n).

The perfect obstruction theory is induced by the universal ideal sheaf Z. Let m: W X
Ig,, — Ig, be the projection morphism. The two-term perfect complex R, RHom(Z,T)o|[2]
gives a perfect obstruction theory on Ig,. Here the subscript 0 denotes the traceless part of

RHom(Z,T).

In general, M*$(y) = [Q*%/G] is a global quotient stack obtained by Geometric Invariant
Theory (GIT) [HL10, MFK94]. @ is an appropriate Quot scheme, hence projective, and
G = GL(n,C) (for n large) is acting linearly on @). We have then the following diagram

MP(7) = [Q°/G] —= (@ /G] = M*(v),

| |

M*(v) M?*(%)

where the horizontal arrows are open embeddings and moreover M**() is projective. Every
stable sheaf E is simple, i.e. End(E) = {C -id} given by scaling, and therefore M?*(y) —
M?#(~) is a coarse moduli space and a C*-gerbe. Since the center Z(G) = C* acts trivially on
() and this coincides with the scaling action on each sheaf, we may ignore scaling by replacing
G with PGL(n, C), which we do from now on. Then by abuse of notation M?*(vy) = M*(~)

and stable sheaves have trivial automorphism groups.
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Assumption 1.1.1 is important in multiple ways. If M?®(y) = M?*%(y) then the sheaves
in question have trivial automorphisms and in particular M?*%(+y) is a scheme or more gener-
ally a Deligne-Mumford stack, whereas in general it is only an Artin stack, since semistable
sheaves can have positive dimensional automorphism groups (even after quotienting out
scaling automorphisms). For example, if E is stable and F' = E @ FE is semistable, then
Aut(F) = GL(2,C). M?*%() is also proper, as M*(~y) is projective. One is then able to
apply the machinery of perfect obstruction theory [BF97, LT98], which requires a DM stack

in order to produce a virtual cycle and properness so that one may take the degree thereof.

In fact, even more is true. In [Beh09], Behrend defined a canonical constructible function
Up: M — Z for any stack M. vy is a measure of the singularity of M. For example,
if M is a smooth DM stack, then vpy = (—1)4™M. Behrend further defined the notion
of a symmetric obstruction theory and observed that the perfect obstruction theory of

Theorem 1.1.2 is symmetric. We have the following remarkable theorem.

Theorem 1.1.4. [Beh09, MT11] Let M be a proper Deligne-Mumford stack with a sym-

metric obstruction theory. Then

deg[M]"" = x(M,vpm) =Y nx(vi((n)) € Z. (1)

nel

Example 1.1.5. Suppose M := M?*(~) is as in Theorem 1.1.2. Then its perfect obstruction

theory is symmetric and thus
DT(M®(y)) = deg[M]*" = x(M, va1).

1. This equality has the striking implications that the classical DT invariant is motivic,
in the sense that it s a weighted Euler characteristic, and moreover it only depends
on the scheme structure of M and not its obstruction theory, since the function vy

depends only on M itself.

2. If M is smooth, then (T) reduces to the Gauss-Bonnet theorem

Crop(Qr) = deg[M]*™ = x (M, vy) = (1) M x (M),
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1.2 Main results

1.2.1 Statement of results and outline of approach

The main objective of this thesis is to give a definition of a generalized DT invariant,
by which we mean a direct generalization of Theorem 1.1.2 when Assumption 1.1.1 fails,
thereby obtaining a virtual count of semistable sheaves even when there exist ones which
are semistable but not stable.

The first main result that we show is as follows.

Theorem 1.2.1. [KLS17, Kiem, Li, S.| Let M = M?*3(~y) be the moduli stack of Gieseker
semistable sheaves on W of Chern character v, where the C*-scaling automorphisms have

been rigidified. Then there exist:

1. A proper DM stack M with a morphism M — M, which gives an isomorphism over
the stable locus M*. M is called the Kirwan partial desingularization of M.

2. A semi-perfect obstruction theory of virtual dimension zero on Mv, which extends

the symmetric obstruction theory of the stable locus M?, and thus a virtual cycle

MY € Ag(M).
We define the generalized Donaldson-Thomas invariant via Kirwan blowups (also called the
DTK invariant) as
DTK(M) := deg[M]*"".

DTK(M) is invariant under deformations of the complex structure of W.

Remark 1.2.2. When M*5(y) = M*(v), i.e Assumption 1.1.1 holds, then M = M and
the semi-perfect obstruction theory ova 1s the symmetric obstruction theory of M. So the

DTK invariant is indeed a generalized DT invariant.

As remarked in the preceding section, the main issue arising in the absence of Assump-
tion 1.1.1 is that M is in general an Artin stack. Therefore, Theorem 1.2.1 says that we
may replace M with a canonical DM stack and work there instead, preserving all the data
on the stable locus M?.

We now briefly outline the construction. M = M?*(y) has the following important

properties:
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1. M is a global quotient stack obtained by GIT. Therefore, we may write M = [X/G]
with a sequence of closed embeddings X C P C (PV)%, where P is smooth and
G = PGL(n,C) acts linearly on PV,

2. M is the truncation of a (—1)-shifted symplectic derived Artin stack [PTVV13] and
in particular a d-critical Artin stack [BBBBJ15, Joy15].

To construct the Kirwan partial desingularization M , we adapt Kirwan’s partial desin-
gularization procedure. In [Kir85], Kirwan described a canonical blowup procedure to
produce a partial desingularization P P, yielding a proper DM stack [ﬁ /G| obtained by
GIT and an isomorphism over the stable locus [P*/G].

By generalizing and adapting appropriately the notion of intrinsic blowup, introduced
in [KL13b], we define a closed G-invariant subscheme X C P xp X, which is independent
of all choices involved and hence canonical. We then define M = [)Z /Gl

To obtain the obstruction theory on Mv, we use the d-critical structure of M. M is
d-critical and hence X is a G-invariant d-critical locus. Then for every z € X such that G-«
is closed in X and H is the stabilizer of z in G (hence reductive), we have G-invariant affine
Zariski open z € U C X,z € V C P and locally closed affine subschemes T' C U, S C V

granted by Luna’s étale slice theorem such that we have a diagram

[T/H] —=[U/q] (1.1)

L

[S/H] —=[V/G]

with étale horizontal arrows and T = (df = 0) C S for f: S — A! an H-invariant regular
function on S.

Thus we have the following H-equivariant 4-term complex

. d(df)V
b = Lie(H) — Tslr 2% Folr = Qglr — §Y. (1.2)

For x € T with finite stabilizer, this is quasi-isomorphic to a 2-term complex which provides
a perfect obstruction theory of [T'/H] and thus of [U/G] near x.

In general, let = € X be lying over x € X with stabilizer R. Then we can lift (1.2)
canonically and find an étale neighborhood [T'/R] — [S/R] — [P/G] of & € P, a vector
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bundle Fg over S with an invariant section wg € HO(S, Fz) such that T = (wg=0)C S,
and a divisor Dg, all R-equivariant, such that (1.2) lifts canonically to a sequence

v = Lie(R) — Tgl7 — Fglz — ¢'(—Dy) (1.3)

whose first arrow is injective and last arrow is surjective. Therefore, (1.3) is quasi-isomorphic
to a 2-term complex

(dw%)v : T[§/R]|f — Féed‘f, (1.4)

where Féed is the kernel of the last arrow in (1.3). Quotienting by R, we get

red . red
([Awg))" : T plgym — Fi§ymlday (1.5)

We show that the collection of the cokernels coker(d(wg?d)v)v patch to a coherent sheaf
Obj; of Ojp-modules, and that the symmetric obstruction theories of the various T de-
fined by (df = 0) induce a semi-perfect obstruction theory [CL11] on M = [X/G], with
obstruction sheaf Ob 7.

The relative version of the above construction can be constructed along parallel lines,
using the machinery of derived symplectic geometry. This implies the deformation invari-

ance of the DTK invariant.

We may further generalize Theorem 1.1.2 and Theorem 1.2.1 to the case of semistable

perfect complexes on W. The second main result that we show is the following.

Theorem 1.2.3. [Sav, S.] Let M = M77%%(y) be a moduli stack of semistable perfect com-
plexes in DP(Coh W), where o is an appropriate stability condition (cf. Definition 6.3.7),
v € H*(W,Q) and C*-scaling automorphisms of complexes have been rigidified.

Then there exists a Kirwan partial desingularization M = M, which is a proper DM
stack and isomorphic to M over the stable locus M?. M admits a semi-perfect obstruction
theory of virtual dimension zero, extending the symmetric obstruction theory of M?®, and
thus a virtual cycle [M]"* € Ag(M).

We therefore may define the generalized Donaldson- Thomas invariant via Kirwan blowups

as
DTK(M) := deg[M]"™.
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Examples of M?~%5(y) where the Theorem applies include Bridgeland stability, as con-
sidered in [PT15], and polynomial stability, as considered in [Bay09, Loll, Lol3].

The main difference with the case of sheaves is that, while still the truncation of a (—1)-
shifted symplectic derived Artin stack, M is no longer a global quotient stack obtained by
GIT. However, it has a similar structure as one can show that it has a good moduli space
[Alp13, AHLH]. With a bit more care and using a Luna étale slice theorem for stacks with
good moduli spaces [AHR15], we show that all the arguments for the construction of M
and its obstruction theory go through in this case as well.

Finally, we remark that even though the deformation invariance property is not stated
in Theorem 1.2.3, it is true in all applications using upcoming work [BLM™] regarding
stability conditions in families and a relative Luna étale slice theorem, which also holds by

upcoming work in [AHR].

1.2.2 Comparison with other works and further directions

Our construction of the DTK invariant fits naturally in the context of obtaining gener-

alizations of Donaldson-Thomas invariants.

At the level of numbers, Joyce-Song [JS12] have also constructed generalized DT invari-
ants. Their approach is motivic in nature, using Hall algebras and Behrend’s constructible
function. In that sense, they are directly generalizing the right hand side of (), whereas
we are generalizing the left hand side. We do expect that the DTK invariant is related to
the Joyce-Song invariant via a universal formula which will provide a natural generalization
of Theorem 1.1.4 and also a wall-crossing formula for the DTK invariant. These will be
investigated in future work.

Kontsevich-Soibelman have also developed a generalized DT theory with an associated
wall-crossing formula in [KS10]. We also refer the reader to the recent work of Behrend-
Ronagh in [BR16a, BR16b].

Beyond numbers, one might also desire a more categorical invariant. Categorifications of
DT theory have been developed in [BBD*12, KL12], where the DT invariant is expressed
as the Euler characteristic of a perverse sheaf on the moduli space. Davison-Meinhardt
[DM16] have also made great progress in categorifying the Joyce-Song DT invariants. We
expect that the methods in this thesis can be adapted to develop a theory of a K-theoretic
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DTK invariant, which will also be the subject of further work.

Regarding the Kirwan partial desingularization /\7, Edidin-Rydh have also developed
a desingularization procedure for stacks with good moduli spaces in [ER17]. For smooth
stacks, our desingularization is the same as theirs. For singular stacks, our Kirwan blowups
can be phrased in their language of saturated blowups, however the desingularization they
obtain is a closed substack of ours. There might be a derived algebraic geometric reason
behind this, which seems worth thinking about. Finally, a very interesting question is
whether M admits a moduli interpretation. This seems especially challenging, but, if
successfully carried out, we believe that it will significantly deepen our understanding and

thus hope that it will eventually be answered.

1.3 Overview of the thesis

In Chapter 1, we give an introduction to classical DT theory, followed by a statement of
the main results of the thesis and a sketch of their proof. We then put the work in context
compared to other works and exhibit possible future directions. We finally fix notation and

conventions that are followed throughout.

In Chapter 2, we give some background on GIT and Kirwan’s partial desingularization
procedure. We then proceed to define Kirwan blowups and construct a Kirwan partial
desingularization for singular quotient stacks obtained by GIT. After some background on
stacks with good moduli spaces and their properties, we generalize the construction to those
as well. The material in Sections 2.3, 2.4 and 2.6 is original, of which 2.3 is based on joint

work with Young-Hoon Kiem and Jun Li.

Chapter 3 contains necessary material on perfect obstruction theory, including symmet-

ric obstruction theory, and semi-perfect obstruction theory.

Chapter 4 contains original material consisting of local calculations, which form the nec-
essary formalism and backbone of the construction of the obstruction theory of the Kirwan
partial desingularization in our theorems. Part of the material in Subsections 4.1.1 and

4.1.2 is based on joint work with Young-Hoon Kiem and Jun Li.
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In Chapter 5, we collect background material on d-critical loci and derived symplectic

geometry. In turn, this is used in conjunction with the results of Chapter 4 and gives a

sufficiently flexible framework in the relative case as well.

Finally, in Chapter 6, we define DTK invariants for sheaves and complexes and prove

their deformation invariance in the former case. Most of the material is original, unless

attributed to other authors.

1.4 Notation and conventions

The following tables summarize notation and abbreviations that are commonly used

throughout the thesis.

Table 1.1: Summary of notation

Notation Explanation

w Smooth, projective Calabi-Yau threefold

C Smooth, quasi-projective scheme, commonly a curve

lej/_cl Truncated cotangent complex of U — C'

0% Element of H*(W, Q)

M Artin stack

M*3(5) Stack of Gieseker semistable sheaves on W of Chern character
o Stability condition on D?(Coh W)

M7755() Stack of o-semistable objects in a heart A C D?(Coh W)
G,H,R Complex reductive groups, usually with H < Gor R< G

g, bt Lie algebras of G, H, R respectively

X, P G-equivariant schemes, P smooth, projective, X C P closed subscheme
V.U G-equivariant schemes, V smooth, U C V closed subscheme
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Notation Explanation

G-z,G, Orbit and stabilizer of a closed point € X in a G-scheme X

Zp, X1 Fixed locus of R-action on X

S, T R-/H-equivariant schemes, S smooth, 7' C S closed subscheme, usually

gintr yintr et
X/ G

ﬁ, YA/,)?, P etc.
ﬁ,)?,Mv etc.
Fy

wy

(4%,9)
Spec(A®)

U, T, M etc.

ILA' 5 ILSpec A®y LM

occuring as étale slices at a closed orbit of a pair V,U

Intrinsic blowups with respect to a group action

GIT quotient of a G-scheme X with linearized action

Kirwan blowups with respect to a group action

Kirwan partial desingularizations of schemes or stacks
Equivariant vector bundle on a G-scheme V'

Element of H(V, Fy/)¢

Commutative differential negatively graded algebra over a ring S
Derived affine scheme

Derived schemes or Artin stacks

Derived cotangent complexes

Table 1.2: Summary of abbreviations

Abbreviation Explanation

CY3 Calabi-Yau threefold

DT Donaldson-Thomas

DTK Donaldson-Thomas invariant via Kirwan blowups
DM Deligne-Mumford

GIT Geometric Invariant Theory
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Additionally:
e Throughout, we work over the field of complex numbers C.

e Unless otherwise stated, we consider connected reductive groups for simplicity of

exposition.

e For a morphism p: U — V and a sheaf E on V| we often use E|y to denote p*FE.
Typically p will be a locally closed embedding or unramified.



Chapter 2

Kirwan Partial Desingularization

2.1 Geometric Invariant Theory (GIT)

In this section, we give some brief background on GIT by stating the basic definitions
and results we will need. A good reference for the subject is [MFK94].
2.1.1 The local case

Let X = Spec A be an affine scheme of finite type over C with an action by a reductive

group G. We have the following theorem due to Nagata.

Theorem 2.1.1. The ring A® of invariant elements of A under the action of G is finitely

generated over C.
This lets us define the GIT quotient of X as follows.

Definition 2.1.2. The GIT quotient of X is the affine scheme X /|G := Spec A®. The

natural morphism X — X /|G is a good categorical quotient.
One important feature of this setup is the existence of the Reynolds operator.

Theorem 2.1.3. There exists an A -linear map R: A — AC, which restricts to the identity
on A%. R is called the Reynolds operator.

More generally, there exists a Reynolds operator M — MS for any finitely generated
G-equivariant A-module M .

12
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Remark 2.1.4. One may think of the Reynolds operator as an averaging operator. If G
is the complexification of a compact Lie group K and p is a bi-invariant Haar measure on
K then R is the operation of averaging over the action of K with respect to u. Since K is

Zariski dense in G, the result is also G-invariant.

We may take an étale slice for the action around a closed point with closed orbit, granted

by the following theorem.

Theorem 2.1.5. (Luna’s étale slice theorem) [Dré04, Theorem 5.3] Let x € X be a closed
point with closed orbit G - x and (thus reductive) stabilizer H = G5. There exists a locally
closed H-invariant affine subscheme T C X containing x such that group multiplication
T x G — X induces an étale morphism T Xy G — X. Here T xyg G = (T x G)/H, where
H acts freely on T x G by (t,9)h = (th,h~'g). Moreover, T xpy G — X s strongly étale,

meaning that the diagram

I'xgG——X

L

T/H X)G

1s cartesian and the lower horizontal arrow is étale.

If X is normal or smooth, then T may be taken to be normal or smooth respectively.

2.1.2 The global case

Let X be a projective scheme over C with an ample line bundle L and an embedding
it X PV =P(H°(X,L¥))

such that L& = i*Opn (1) for some sufficiently large r. Suppose that X admits an action

by a reductive group G.

Definition 2.1.6. We say that the G-action on X is linearized with respect to L or that L
is G-linearized if the action of G on X lifts to an action on L. More precisely, if we denote
the group action by o: X X G — X, m1: X x G — X the projection to the first factor and
m2: X X G X G = X X G the projection to the first two factors, a G-linearization is an
1somorphism

$: "L — 7iL
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satisfying the cocycle condition
(idx X p)*® = mjy®P o (0 X idg)" P

where p: G x G — G is group multiplication.

Once we have a linearization of the G-action on X, we can define the notions of stability

and semistability.
Definition 2.1.7. Let x € X. We say that x is:

1. semistable, if there evists a d € Ny and an invariant section s € H°(X, L®)Y such
that s(x) # 0.

2. stable, if it is semistable and moreover the orbit G - x of x is closed in the set of

semistable points of X and the stabilizer G, of x is finite.
3. unstable, if it is not semistable.

We denote the loci of semistable and stable points of X by X*°(L) and X*(L) respectively.
If the choice of L is clear from context, we will omit it from the notation and merely write
X%, X?® instead.

Remark 2.1.8. [t is clear from the above definition that X*(L) C X*°(L) C X. Also, both

inclusions are open embeddings.
The main theorem of GIT is as follows.

Theorem 2.1.9. Let X be a projective scheme with a G-linearized ample line bundle L.
We define the GIT quotient of X as

G
X* /G := Proj | D B (Y L®d)
d>0

X*% |G is projective. There is a natural quotient map X*° — X*° |G which is a good
categorical quotient. Moreover, there is an open subscheme X°/G C X*° /G such that
71 (X?®/G) = X® and the induced morphism X° — X*/G is a good geometric quotient.
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2.2 Kirwan’s partial desingularization procedure for smooth

GIT quotients

In this section, we briefly recall Kirwan’s desingularization procedure for smooth GIT
quotients. We work with the following situation: Let G be a reductive group; G acts on a

PV via G — GLy,1, and
X c Pc (PV)s (2.1)
are G-invariant closed subschemes where P is smooth. We also assume P* # ().

2.2.1 Kirwan’s blowup algorithm

We review Kirwan’s partial desingularization P of P, as developed in [Kir85].

As the stabilizer groups of points in P* are all finite, P*/G = P®/G can have at worst
finite quotient singularities. In stack language, this means that the quotient stack [P*/G]
is a DM stack. When P* # P, the GIT quotient P/ G will have worse than finite quotient
singularities, and the quotient stack is not DM. In [Kir85], Kirwan produced a canonical
procedure to blow up P in order to produce a DM stack out of the Artin stack [P/G].

If the orbit of an = € P is closed in P, then the stabilizer G, of x is a reductive subgroup
of GG. Let us fix a representative of each conjugacy class of subgroups R of G that appear
as the identity component of the stabilizer G, of an x € P with G-z closed in P. Let R(P)
denote the set of such representatives. By [Kir85], R(P) is finite and R(P) = {1} if and
only if P = P?.

Let R € R(P) be an element of maximal dimension and let Zr be the fixed locus by
the action of R, which is smooth. Then GZr = G X yr Zp is smooth in P, where N is
the normalizer of R in G.

We let m : blr(P) — P be the blowup of P along GZr = G Xyr Zr. Then L =
7*Op(1)(—€eF) is ample for € > 0 sufficiently small, where E denotes the exceptional divisor
of m. The action of G on P induces a linear action of G on blr(P) with respect to L. We

have the following theorem due to Reichstein.

Theorem 2.2.1. [Rei89] Let Z = GZr C P as above and denote q: P — PJ/G. The
unstable locus of blr(P) is the strict transform of the saturation ¢~ *(q(Z)) of Z.
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Therefore, the semistable points in the closure of blr(P) inside the projective space
given by the embedding induced by the ample line bundle L all lie in blg(P). The unstable
points in blr(P) are precisely those points whose orbit closure meets the unstable points in
E = PNgy,/p, and the unstable points of blg(P) lying in the fiber E|, = PNgyz, /pl. for
T € Zp are precisely the unstable points of the projective space PNgz,, plz with respect to
the linear action of R. We define

P = (blp(P))™.

By [Kir85], R(P) = R(P) — {R}.

Definition 2.2.2. The scheme P (resp. P)/G) is called the Kirwan blowup of P (resp.
PJ/G) with respect to the group R.

Repeating the Kirwan blowup finitely many times, once for each element of R(P) in

order of decreasing dimension, we end up with a G-equivariant morphism

P—P
which induces a projective morphism
P/G — PJG.

As P is smooth, P /G has at worst finite quotient singularities.

Definition 2.2.3. The scheme P (resp. P/G) is called the Kirwan partial desingularization
of P (resp. PJJG).

2.2.2 Kirwan blowup by slices

We show here how to perform Kirwan’s algorithm by taking slices of closed points in P
with closed G-orbit.

We remark that we can assume that the maximal dimension of elements in PR(P) is
equal to the maximal dimension of elements of R(X). Otherwise letting R € R(P) be an
element of maximal dimension, the locus GZr C P is disjoint from X. Thus we can replace
P by P and have X C P C (PN')®, for a different N’, while having R(P) = R(P) — {R}.
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Let R € R(X) be an element of maximal dimension. (By assumption, it is also an
element in R(P) of maximal dimension.) Let x € X be such that G - = is closed in X and
the identity component of the stabilizer G, is R. By Luna’s étale slice theorem (cf. Theo-
rem 2.1.5), there is a locally closed R-invariant smooth affine subvariety S’ of P containing

x such that the G-equivariant map
G xgS — P, (g,5) > gs,
is étale onto an open subset of P and the associated morphism of quotient stacks
(G xr S'/G] = [S"/R] — [P/G]

is étale.

We blow up S’ along the fixed locus S’? (of the action of R). Let S’ denote the semistable
part in the blowup. (Thus S’ is the Kirwan blowup of S” associated with R.) Then we have
an étale morphism

[S"/R] — [P/G). (2.2)

Similarly, S = X xp S’ is an étale slice of X at z, and S=25x P X is the Kirwan blowup
of S associated with R, and
[S/R] — [X/G] (2.3)

is étale.
In conclusion, the collection of (2.2) (resp. of (2.3)) together with P — GZp (resp. with
X — GZg) form an étale covering of P (resp. of X).

Remark 2.2.4. At this point we remark that we can follow the procedure outlined in the
previous section more closely by taking a Gy-invariant slice S” at x and then blowing it up
along G.S"®. Then we would obtain a more refined version of (2.2) as a sequence of étale

morphisms
[57/R] — [S"/G] — [P/G]
Moreover, the second arrow also induces an étale morphism at the level of GIT quotients

S")G, —s PG
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by the properties of an étale slice (cf. [Dré04, Theorem 5.3]).

2.3 Kirwan partial desingularization of singular GIT quo-

tients

In this section we generalize the results of the previous section to possibly singular GIT

quotients, by adapting the intrinsic blowups introduced in [KL13b].

2.3.1 Intrinsic and Kirwan blowups

Suppose that U is a scheme with an action of a reductive group G. Let us assume that
G is connected, as this will be the case when we take blowups throughout.

Suppose that we have an equivariant embedding U — V into a smooth G-scheme V
and let I be the ideal defining U. Since U C V is G-equivariant, G acts on I and we
have a decomposition I = I7% @ I"™ into the fixed part of I and its complement as G-
representations.

Let V& be the fixed point locus of G inside V and m: blg(V) — V the blowup of V
along VY. Let E C blg(V) be its exceptional divisor and ¢ € ['(Opi, vy (E)) the tautological
defining equation of E. We claim that

7 I™) C € Oy (—E) C Opig- (2.4)

Let R : I — I/ be the Reynolds operator. Then for any ¢ € I™", R({) = 0. Let x € V&
be any closed point. Since O, is fixed by G, we have (|, = R({)|, = 0. This proves that
all elements in I™ vanish along V¢, hence (2.4).

Consequently, £~ ta~1(I"™) C Opi(v)(=E) C Oy vy We define Imtr ¢ Oyl (v) to be
I — jdeal generated by 7~ 1(I/%) and £t~ 1(I™). (2.5)

Definition 2.3.1. (Intrinsic blowup) The G-intrinsic blowup of U is the subscheme U™ C
blg(V) defined by the ideal I,

Lemma 2.3.2. The G-intrinsic blowup of U is independent of the choice of G-equivariant

embedding U C V', and hence is canonical.
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Proof sketch. The proof is identical to [KL13b, Section 3.1]. We give a very brief account
of the main steps involved.

One firstly establishes the claim in the case of U being a formal affine scheme such that
the fixed locus U% is an affine scheme which has the same support as U does.

For an affine scheme U with a G-action, one can then take the formal completion U€ of
U along UY and check that the G-intrinsic blowup of U¢ glues naturally with U — U to
yield the G-intrinsic blowup of U.

Finally, one can show by taking a cover by (Zariski or étale) open affine schemes that
the intrinsic blowup is well-defined for a general scheme or DM stack with a (representable)

action of G. ]
Remark 2.3.3. The following remarks on the proof of Lemma 2.3.2 are in order:
1. IfU is smooth, then the G-intrinsic blowup coincides with the blowup of U along UC.

2. Since the core of the proof relies on working first in the formal completion of V&
inside V' and proving the Lemma 2.3.2 in the case of formal schemes, this enables us

to perform local calculations formally (or analytically) locally.

Suppose U is an affine G-scheme, then we can think of all points of U as being semistable
as in the local case for GIT in Subsection 2.1.1. We can also make sense of semistable points
in U™ without ambiguity.

In the Kirwan blowup, we can detect which points on the exceptional divisors that occur
are unstable just by looking at the action of R on PNgz, /p. Furthermore, a point off the
exceptional divisor is unstable if the closure of its orbit meets the unstable locus of the
exceptional divisor. Here we are using again Theorem 2.2.1. Thus for any smooth affine
G-scheme V', we can define its Kirwan blowup V associated to any R € R(V) of maximal
dimension.

It is not hard to see that if we have an equivariant embedding V' — W between smooth
schemes, then (Wir)ss 0 Vintr — (1/inir)ss haged on our description. Hence, in the above
situation where we consider R = G, we may define (U™7)%5 := U™ N (VI™M7)$5 for any
equivariant embedding U — V into a smooth scheme V. This is independent of the choice
of U = V.

Definition 2.3.4. (Kirwan blowup) We define the Kirwan blowup of a possibly singular
affine G-scheme U associated with G to be U = (U™Mr)5,
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Example 2.3.5. We give a few ezamples of Kirwan blowups when U is affine and G = C*.

1. Suppose that U has a trivial G-action. Then US = U and it is easy to check that
U=9.

2. Let V = C?

$7y}

Vit — bl,eV and V is obtained by deleting the two punctured azes (x = 0,y # 0)

where G acts on x with weight 1 and on y with weight —1. Then

and (x # 0,y = 0) as well as the points 0,00 on the exceptional divisor E = P!,

3. LetV = (Cgvy be as before and U = (x?y = 0, xy?> = 0) C V. Then UcCVis given
by the vanishing of €2, where & is the local equation defining the exceptional divisor of
yintr

Remark 2.3.6. Suppose that U — V is a G-equivariant embedding into a smooth G-scheme
V. Let, as before, I be the ideal of U in V.

We now explain how one can proceed if G is not connected. Let Gy be the connected
component of the identity. This is a normal, connected subgroup of G of finite index. Let
I = If® @ "™ be the decomposition of I into fixed and moving parts with respect to the
action of Go. Using the normality of Go, we see that the fized locus VE0 is a closed, smooth
G-invariant subscheme of V. and also IT, I™ are G-invariant.

Let 7: blyc, V. — V be the blowup of V along VG with exceptional divisor E and
local defining equation €. Then we take I™" to be the ideal generated by w'(I5%) and
Eln=1(I™).  Everything is G-equivariant and we define the U™ as the subscheme of
blyc,V defined by the ideal 1™,

Finally, we need to delete unstable points. By the Hilbert-Mumford criterion (cf. [MFK94,
Theorem 2.1]) it follows that semistability on E with respect to the action of G is the same
as semistability with respect to the action of Gy, since every l-parameter subgroup of G
factors through Gg, and hence we may delete unstable points exactly as before, using the
discussion in Subsection 2.2.1, and define the Kirwan blowup U.

One may check in a straightforwardly analogous way that this has the same properties

(and intrinsic nature). It is obvious that if G is connected we obtain Definition 2.3.4.

2.3.2 Kirwan partial desingularization for quotient stacks

We continue working with the G-triple X € P C (PV)** as in (2.1). We list

R(P*) = {R1,..., R, {1}}
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in order of decreasing dimension.

We begin with R = Ry € R(P?*%). For any x € Zr C P, let S be an étale affine slice for
zin Pandlet T =5 xp X. (In case x € X, we can choose S so that T' = (.)

As S is smooth, affine and R-invariant, we let S be the Kirwan blowup of S associated
with R. As T C S is closed and R-invariant, we let T c S be the Kirwan blowup of T

associated with R. They fit into a commutative diagram

GXRT\HGXRS\Hﬁ (2.6)

|

GnyP
X

This collection of étale maps G xr S — P cover the locus GZp inside P. Let E C P be
the exceptional divisor of P — P. Because P — GZr = P- E, P— GZg can be viewed as
an open subscheme of P. Consequently, the collection of étale maps G x g S P together
with P — F form an étale covering of p.

We next consider the collection of all possible G x g TCGx R S.

Proposition 2.3.7. The collection ofoRf —~ P just mentioned together with X —GZp C
P-E form a closed subscheme X c ﬁ, called the Kirwan blowup of X. Further, X s
canonical in the sense that it is independent of the choice of slices or choice of projective

embedding.

Proof. We first show the independence from the particular choice of slices.

Let 51,52 be two étale slices in P, such that 77 = S1NX, T = Sy N X are the induced
slices for X. Let I, I» be the ideals of 77 C S7 and Ty C Sy respectively.

Near every point in P covered by S7 and S5, we can find a common étale refinement Syo.
This can be seen as follows: Since [P/G] has affine diagonal, the fiber product S Xp/¢| Se
is an affine scheme with a (R x R)-action. For any point z fixed by R we may take a slice
S19 for z in Sy X(P/q] So.

Consider the composition p;: S12 — 51 X[P/q) Sy — S;. Since Si2 and .S; are smooth of
the same dimension and p; induces an isomorphism on tangent spaces at z it must be étale
(up to shrinking). It is also evidently R-equivariant and hence is indeed an étale refinement

of S1 and Sy. It follows that pjI; = p5I> = I12 as ideal sheaves on Sj2, defining 712 C Sio.
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Taking Kirwan blowups commutes with étale base change. We thus obtain induced étale
maps p;: Si2 — S, such that PrInT = pEIntT = [ defining the subscheme Tis C Sio.

Since we may cover (G X S1) X p (G x g S2) by étale opens of the form G x r S12 around
the fixed points of R, étale descent implies that we obtain a well-defined closed subscheme
XcP.

Regarding the choice of projective embedding, we may cover X by G-invariant affine
opens U, C X. Let U, — V, be equivariant embeddings into smooth G-schemes. Using
those, we may define [//\'a C 17& by first taking intrinsic blowups and restricting to semistable
points. We observe that by Remark 2.1.1 the latter restriction is unambiguous, as the
unstable points of the intrinsic blowup are the ones whose G-orbit closure intersects the
unstable locus of the exceptional divisor. Therefore, by the canonical nature of intrinsic
blowups, for each a the Kirwan blowup ﬁa is independent of the local embedding U, —
Vu. Since we may choose those to come from a G-invariant open cover V, C P of any
projective embedding X C P, it follows that X is independent of the choice of projective
embedding. O

Remark 2.3.8. When X?® is dense in X, then X — X is birational. The other extreme
case is when X€ = X, then X = (. In general there are cases when (XG)red = Xyeq and
X #£0.

We let P, = P and X = X be their respective Kirwan blowups associated with R;.
Then X; C Pi, and R(P1) = {Ry, - , R, {1}}. We let X5 C P; be X; C P, the Kirwan
blowups associated with Rs, and so on, until we obtain X,, C P,,, having the property

i)C{(Pm) = {1}
We denote

X =X, P=P,.

Definition 2.3.9. We call X and M = [X /@] the Kirwan partial desingularization of X
and the Artin stack M = [X /G|, respectively.

Remark 2.3.10. When X? is dense in X, M= M is proper and birational.

2.4 The relative case

Kirwan blowups behave well in families over a smooth curve.
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Lemma 2.4.1. Let G be a reductive group; let V be a smooth G-scheme, C' a smooth curve
and m: V — C a smooth G-equivariant morphism, where G acts on C trivially. Then V¢

is smooth over C.

Proof. This is a standard fact as we are working over C. First, as V is smooth, V& is
smooth. To prove that V& is smooth over C, we need to show that for any closed z € V&,
the projection dr(x) : T,VE — Tr(2)C is surjective.

Indeed, as both V and V¢ are smooth, T,V = (T,,V)%. Let v € T,V so that dr(z)(v) #
0. Applying the Reynolds operator R, we get that the G-invariant part of v, namely R(v) €
(T, V)%, has dr(x)(R(v)) = dn(x)(v), thus dr(z) : T,VE — T (2)C is surjective. O

The same proof gives the following result on étale slices.

Lemma 2.4.2. Let m: V. — C be as in Lemma 2.4.1. If x© is a closed point in V with

reductive stabilizer H and S is an étale slice for x, then m: S — C s smooth.

Corollary 2.4.3. Let w: V — C be as in Lemma 2.4.1. Then for any point ¢ € C' we have

a canonical isomorphism (V). = V..
Proof. This follows immediately from the fact that V& is smooth over C. O

We obtain the following result on intrinsic partial desingularizations.

Proposition 2.4.4. Let X = (XT)% with X ¢ P C PN x C be closed G-schemes as
before (cf. (2.1)) except where C is a smooth curve and G acts on PV via a homomorphism
G — GL(N +1). Let X be the Kirwan partial desingularization of X. Then for any closed
ceC, (X).=X..

Proof. Let X be the Kirwan blowup of X with respect to G. By the construction of Kirwan
partial desingularization, the lemma follows from that (X). = X..

We are considering the case where X comes with an equivariant C'-embedding X C V
where V' — (' is smooth. Let I C Oy be the ideal sheaf of X C V. Then, applying the

Kirwan blowup 7: X — X we have a short exact sequence
int
0—I"" — Op — 05 — 0.
Let C. be the residue field at ¢ € C'. We then have

intr ®o, Cc — O(V)c — O()?)c — 0.
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This fits into a diagram of exact sequences

intr ~ > o —
| TOC R O%). 0
(I ®o, C,.)mtr O‘//: 0)/(\0 0.

By the preceding corollary, the middle arrow is an isomorphism. Moreover, if I = I @™

is the decomposition of I into its fixed and moving parts, since G is reductive,
180, Co = (I @0, C.) & (I 0, C.)

is the decomposition into fixed and moving parts since the action of G on C is trivial. We
conclude that the leftmost horizontal arrows have the same image under the identification

~

O(\A/)c ~ O and thus we have a natural isomorphism (X)e ~ )/(\C O

2.5 Stacks with good moduli spaces

Here we collect some useful results about the structure of a certain class of Artin stacks,
namely those with affine diagonal admitting good moduli spaces, following the theory de-
veloped by Alper ét al. All the material of the section can be found in [Alp13] and [AHR15].

We have the following definition.

Definition 2.5.1. [Alp13, Definition 4.1] A morphism 7: M — Y, where M is an Artin
stack and Y an algebraic space, is a good moduli space for M if the following hold:

1. m is quasi-compact and m.: QCoh(M) — QCoh(Y) is exact.
2. The natural map Oy — 7,.Onr is an isomorphism.

The intuition behind the introduction of the notion of good moduli space is that stacks
M that admit good moduli spaces behave like quotient stacks [X**/G] obtained from GIT
with good moduli space given by the map [X*°/G] — X*°/G. In this sense, it is a gener-
alization of GIT quotients for stacks.

We state the following properties of stacks with good moduli spaces.

Proposition 2.5.2. [Alpl3, Proposition 4.7, Theorem 4.16, Proposition 9.1, Proposi-
tion 12.14] Let M be locally noetherian and 7: M — Y be a good moduli space. Then:
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1. m s surjective.
2. m is unwersally closed.

3. Two geometric points x1,x2 € M(k) are identified in'Y if and only if their closures
{z1} and {x2} in M intersect.

4. Every closed point of M has reductive stabilizer.
5. Lety € |Y] be a closed point. Then there exists a unique closed point x € |7~ 1(y)]|.

6. Suppose that
Aj/ *)/l/l
Y ——=Y

is a cartesian diagram of Artin stacks, with Y, Y’ algebraic spaces.

(a) If M =Y is a good moduli space, then M’ — Y" is a good moduli space.
(b) If Y =Y is fpgec and M" — Y is a good moduli space, then M —'Y is a good

moduli space.
7. If M is of finite type, then Y 1is of finite type.

Regarding the étale local structure of good moduli space morphisms for stacks with
affine diagonal, we have the following theorem, which is a generalization of Luna’s étale

slice theorem for stacks.

Theorem-Definition 2.5.3. (Quotient chart) [AHR15, Theorem 2.9] Let M be a locally
noetherian Artin stack with a good moduli space m: M — M such that w is of finite type
with affine diagonal. If x € M is a closed point, then there exists an affine scheme U with

an action of G5 and a cartesian diagram

U/G.] Lﬂf 2.7)
U)Gy ——M

such that ® is étale, representable, affine and UJ/G, is an étale neighbourhood of w(x).
We refer to the data (U, ®) as a quotient chart for M centered at x.
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2.6 Kirwan partial desingularization for stacks with good

moduli spaces

In Subsection 2.3.2, we constructed a Kirwan partial desingularization M when M was
a global quotient stack [X/G] obtained by GIT. We also had the usual GIT morphism
m: [ X/G] - X)G.

In this section, we generalize the construction to the case of stacks with good moduli

spaces.

Theorem 2.6.1. Let M be an Artin stack of finite type over C with affine diagonal. More-
over, suppose that m: M — M is a good moduli space morphism with ™ of finite type and
with affine diagonal. Then there exists a canonical DM stack M, called the Kirwan partial
desingularization of M, together with a morphism p: M = M. Moreover, M admits a

good moduli space M and the induced morphism M — M is proper.

Proof. The proof is analogous to the arguments of section 2.3.2. The only difference of
substance is the use of Theorem 2.5.3 instead of the usual Luna slice theorem.

Let M™% be the substack of M whose points have stabilizers of the maximum possible
dimension. This is a closed substack of M. For any closed point z € M™% applying

Theorem 2.5.3, we have a cartesian diagram

Dy

Uz) Gyl —> M (2.8)
Uy /|Gy —— M.

The morphisms @, cover the locus M™%, We may apply the Kirwan blowup to each
quotient stack [U,/Gy] to obtain good moduli space morphisms [Uy/Gy] — Uy /G-

We need to check that these glue to give a stack M7 with a universally closed projection
M1 — M and a good moduli space M — M;. By the properties of the Kirwan blowup,
the maximum stabilizer dimension of M will be lower than that of M and we may then
repeat the procedure.

Suppose z,y are two closed points of M such that G, G, are of maximum dimension.
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We obtain a fiber diagram of stacks

[Uz X m Uy /(Gz X Gy)] —— [Uy /Gy (2.9)
U/ G M

where Uy, := U X p Uy is an affine scheme. This is due to the cartesian diagram

UIXMUy M

i lAM

Up x Uy —= M x M

and the fact that M has affine diagonal.

By the intrinsic nature of the Kirwan blowup, one may easily verify that we obtain a

diagram
}/(Gw x % (2.10)
U,/Ghal [U,/G,)

with affine, étale arrows and moreover there are canonical isomorphisms between [(//}y /G X
Gy) and [Us/Ga) xm [Uy /Gy and [Us/Ga] x a1 [0y /G-

Using the charts [U,/G] together with a cover of M \ M™% we therefore obtain an
atlas for a stack M; with a map to M. By the canonical isomorphisms of the previous
paragraph, M is independent of the particular choices of charts for M.

Note that the morphisms ®,, ®, are strongly étale and hence stabilizer preserving. It
follows that all arrows in (2.9) are stabilizer preserving and thus both arrows in diagram
(2.10) are stabilizer preserving and étale and therefore must be strongly étale. We thus

obtain a corresponding diagram of étale arrows at the level of good moduli spaces of the
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Kirwan blowups

[Usy/(Ga x Gy)]

G]/ .

U/ Ga / \

where both squares are cartesian. Hence the morphisms [U,/G,] — Uy /G, for all z €
M™% together with an atlas of M \ M™% glue to give a morphism M; — M;. By

Proposition 2.5.2, this is a good moduli space morphism.

U,/ Gy

To see that M1 — M; has affine diagonal, we may work étale locally. We consider the

diagram

U/G] —=[U/G] xuya U/G] vjG (2.11)

T~ | l

[U/G] x [U/G] UJGxUjG

where the right square is cartesian. If U is affine, then [U/G] has affine diagonal by a stan-
dard argument (for example, see [Alp13, Example 12.10]), and U//G is also affine and thus
its diagonal is a closed immersion. It follows from the diagram and the usual cancellation
property that the diagonal of [U/G] — U//G is affine. We can reduce to this case by using
the above cover of My by quotient charts. This shows that My — M; has indeed affine
diagonal.

M also has affine diagonal since we have a cartesian diagram

[Uay/(Ga x Gy)] My

|

[Ua/Ga] % [Uy/ Gyl —= My x My
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where the lower horizontal arrows give an étale cover of My x My and the left vertical
arrow is affine.

My, M; and the morphism M7 — M; have the same properties as M, M and M — M
and hence we may continue inductively to obtain the partial Kirwan desingularization M
and its good moduli space M — M.

Finally, if G is finite in (2.11), then the diagonal of M — M is finite (cf. [MFK94,
Proposition 0.8]). Thus M — M is separated and by Proposition 2.5.2 also universally

closed, hence proper. O



Chapter 3

Semi-perfect Obstruction Theory

This chapter contains necessary material about semi-perfect obstruction theories, as
developed in [CL11].

3.1 Perfect obstruction theory

Let U — C be a morphism, where U is a scheme of finite type and C' a smooth quasi-

projective scheme. We first recall the definition of perfect obstruction theory [BF97, LT98].

Definition 3.1.1. (Perfect obstruction theory [BF97]) A (truncated) perfect (relative) ob-

struction theory consists of a morphism ¢: E — l}lZ]/_C1 in D’(Coh U) such that

1. E is of perfect amplitude, contained in [—1,0].
2. h9(¢) is an isomorphism and h='(¢) is surjective.

We refer to Obys := H'(EV) as the obstruction sheaf of ¢.

Definition 3.1.2. (Infinitesimal lifting problem) Let t: A — A be an embedding with A

local Artinian, such that I-m = 0 where I is the ideal of A and m the closed point of A.
We call (A, A, 1, m) a small extension. Given a commutative square

LA (3.1)
7
7
//§

— =

L

bi<—~D
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such that the image of g contains a point p € U, the problem of finding §: A — U making
the diagram commutative is the “infinitesimal lifting problem of U/C at p”.

Definition 3.1.3. (Obstruction space) For a point p € U, the intrinsic obstruction space to
deforming p is TI},U/C = H! <(L5/é) |p). The obstruction space with respect to a perfect
obstruction theory ¢ is Ob(¢, p) :== H(EV|,).

Given an infinitesimal lifting problem of U/C at a point p, there exists by the standard

theory of the cotangent complex [IlI71] a canonical element

w (9:8,8) € Bxt! (g L3 bl ) = Thyjo ©c 1 (3.2)
whose vanishing is necessary and sufficient for the lift g to exist.

Definition 3.1.4. (Obstruction assignment) For an infinitesimal lifting problem of U/C at

p and a perfect obstruction theory ¢ the obstruction assignment at p is the element
obu (¢, 9, A, A) = h'(¢") (w (9, A,A)) € Ob(¢,p) ®c 1. (3.3)

Suppose now that U is given by the vanishing of a global section s € I" (V| F') where F’
is a vector bundle on a scheme V which is smooth over C. Let J denote the ideal sheaf of
UinV and j: U — V the embedding. Then we have a perfect obstruction theory given by
the diagram

d sV
E V)0~ Qo] (3.4)
CO
/
L[Z]//\l/( [J/J? e, Qv/clul-

Since V is smooth over C we can find a lift ¢': A — V of the composition j o g.
Composing with the section s: V — F we obtain a morphism so ¢’: A — (¢/)*F. Since
g = ¢'|a factors through U, we must have so ¢’ € I ®c F|,.

Let p: I ®c F|p, = I ®c Obg|, = I ®c Ob(¢,p) be the natural projection map.

Lemma 3.1.5. [KL12, Lemma 1.28] oby (¢, 9,A,A) = p(sog').
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Proof. oby(¢,g,A,A) is given by the composition

e p— s = 1) (3.5)

gE — g*LU/C AJA

This fits into a commutative diagram

9" Qvjc == 9g"Qy/c (3.6)

A

« @ s >—1
giE g L(*]/C*:I[l]
gF T

Since V' is smooth over C, the map oby must be zero. Using the distinguished triangle of
the first column, we get a long exact sequence in cohomology
* (dv/csv)v * TV
Hom(g"Qy /o, I) = I @c Tyclp ———— Hom(g"F",I) = I ®c F|, (3.7)
— Ext!(g"E, I) — Ext'(¢"Qyyc, 1).

Now, the fact that oby is zero implies that oby (¢, g, A, A) lies in the cokernel I @¢ Ob(¢, p)

of the map (dy,cs”)Y in (3.7). It is now easy to see using the diagram

9 Qv clu g*E g FY|y[1]

I\* oV
g ¢ wf

oLy el ——g" Ly ——= 9" Ly —=g"J/ (1]

| |

>_ >_1 >_1
LZ/é’A SO — Ly a —1[1],

that indeed oby (9,9, A, A) = p(sog'). O
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3.2 Symmetric obstruction theory

Symmetric obstruction theories are a special case of perfect obstruction theories. For

simplicity, we take C' = SpecC.

Theorem 3.2.1. [Beh09, Definition 3.5] A perfect obstruction theory ¢: E — lej_l 18
symmetric if E is endowed with an isomorphism 0: E — EV[1] satisfying 0V[1] = 6.
Remark 3.2.2. The obstruction sheaf of a symmetric obstruction theory satisfies Oby =
HY(EY) ~ H'(E) ~ HO(LZ ") = Qp.

Example 3.2.3. Suppose that U = (df =0) C V, where V is smooth and f: V — C is a

reqular function. Then the two-term complex
Hy
E = [Tv|ly — Qvlul,

where the arrow is given by the Hessian of f, is a symmetric obstruction theory for U.
However, there are symmetric obstruction theories which are not of this form, as was
shown in [PT14].

3.3 Semi-perfect obstruction theory

Definition 3.3.1. Let ¢: E — Lgfcl and ¢': E' — Ltz,fcl, be two perfect obstruction theories
and : Obg — Obgy be an isomorphism. We say that the obstruction theories give the same

obstruction assignment via v if for any infinitesimal lifting problem of U/C at p

1/1 (ObU(¢7 g, A? A)) = ObU(d)/? 9, Av A) € Ob(¢/,P) Qc I. (38)

We are now ready to give the definition of a semi-perfect obstruction theory.

Definition 3.3.2. (Semi-perfect obstruction theory [CL11]) Let M — C be a morphism,
where M is a DM stack, proper over C, of finite presentation and C is a smooth quasi-
projective scheme. A semi-perfect obstruction theory ¢ consists of an étale covering {Uy }aeca

of M and perfect obstruction theories ¢q: Eo — L%a_/lc such that

1. For each pair of indices ., 3, there exists an isomorphism

waﬁ: Obd)a‘UaB — Ob¢6|UaB
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so that the collection (Oby, ,ap) gives descent data of a sheaf on M.

2. For each pair of indices «, 3, the obstruction theories Ea]Uaﬁ and Eﬁ\Uaﬁ give the

same obstruction assignment via Yap (as in Definition 3.5.1).

Remark 3.3.3. The obstruction sheaves {Obg, }aca glue to define a sheaf Oby on M. This

is the obstruction sheaf of the semi-perfect obstruction theory ¢.

Suppose now that M — C'is as above and admits a semi-perfect obstruction theory.

Then, for each o € A, we have
1 O( AV
Cunjo C Nuwjo = W /RO(LE 1Y) S0 3y n0(BY) € h(EY),

where Cy, /c and Ny, ;¢ denote the intrinsic normal cone stack and intrinsic normal sheaf
stack respectively, where by abuse of notation we identify a sheaf F on M with its sheaf
stack.

We therefore obtain a cycle class [¢y,] € Z,0by, by taking the pushforward of the cycle
[Cu./c] € ZuNy, jc-

Theorem-Definition 3.3.4. [CL11, Theorem-Definition 3.7] Let M be a DM stack, proper
over C, of finite presentation and C a smooth quasi-projective scheme, such that M — C
admits a semi-perfect obstruction theory ¢. The classes [cy,] € Z,Obg, glue to define an
intrinsic normal cone cycle [cg] € Z,Oby. Let s be the zero section of the sheaf stack Obg.

The virtual cycle of M is defined to be
M, g = s'[cy] € AuM,

where s': Z,O0by — A M is the Gysin map. This virtual cycle satisfies all the usual prop-

erties, such as deformation invariance.

Remark 3.3.5. One can also consider étale covers of M by DM quotient stacks [Uy/Gql,
where G4 acts on U, with finite stabilizers. Then there is a natural generalization of the
notion of semi-perfect obstruction theory and Theorem 3.3.4 in this setting. This will be
used in Chapter 6 in order to glue the intrinsic normal cone cycles obtained by perfect

obstruction theories on a cover of this form.



Chapter 4

Local Calculations

In this chapter, we collect a series of lemmas and propositions that will be useful in
subsequent chapters. We encourage the reader to consult Subsection 5.1.1 and in particular
Definition 5.1.1 and Definition 5.1.5 of a d-critical chart and an embedding of d-critical
charts prior to reading the contents of this chapter, as we will be using this terminology

when necessary.

4.1 Local models and standard forms

4.1.1 The absolute case

Let V be a smooth affine G-scheme. The action of G on V' induces a morphism g Oy —
Ty and its dual oy : Qy — g¥ @ Oy.
We consider the following data on V.

Setup-Definition 4.1.1. The quadruple (V, Fy,wy,Dy), where Fy is a G-equivariant
vector bundle on V, wy an invariant section with zero locus U = (wy = 0) C V and

Dy CV an effective invariant divisor, satisfying:

1. oy(—Dvy) : Qu(—Dy) — g¥(—Dy) factors through a morphism ¢y as shown

Qy(—Dy) — Fy 2% ¢¥(~Dy). (4.1)

2. The composition ¢y o wy vanishes identically.

35
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3. Let R be the identity component of the stabilizer group of a closed point in 'V with
closed orbit. Let VT denote the fized point locus of R. Then ¢y |,r composed with
the projection g¥(—Dy) — vV (—Dy) is zero, where v is the Lie algebra of R.

gives rise to data
Ay = (U,V, Fy,wyv, Dy, ¢v)

on V. We say that these data give a weak local model structure for V.. We also say that U

s in weak standard form.

Remark 4.1.2. Note thatif f: V — Al is a G-invariant function on'V, then (U, V, Qy, df,0, ov)
give a weak local model for V. This data is equivalent to an invariant d-critical chart
(U,V, f,i) for U (see Definition 5.1.1 later). Therefore, an invariant d-critical locus (cf.

Subsection 5.1.2) is a particular case of weak standard form.

4.1.2 Blowup bundle and section

Let V be a smooth affine G-scheme, Fy a G-vector bundle on V and wy € T'(V, Fy)¢
a G-invariant section. Then U = (wy = 0) is a G-invariant subscheme of V. Since G is

reductive, we have a decomposition
Fylya = Fy|lls @ Fy|Te 4.2
V’VG V"/G @ rv VG- ( . )

Definition 4.1.3. (Blowup bundle) Let 7 : V — V be the Kirwan blowup of V associated
with G. The blowup bundle of Fy, denoted by F:, is defined as

Fp = ker (m*Fy — ©*(Fy|ye) — m* (Fv|()).

The blowup section

wp € F(V, F‘A/),
is the lift of wy, which exists since T wy maps to zero in 7 (Fy 7‘%)

Proposition 4.1.4. Let U' C V be defined by the vanishing of wg- Then U' is the Kirwan
blowup U of U.

Proof. Let I be the ideal of U in V, generated by the section w. We need to check that
the ideal I'™" given by (2.5) coincides with the ideal generated by wp- By the above, it
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suffices to work locally. But in local coordinates wy; is obtained from m*wy by multiplying
the moving components with €1, where ¢ is the local equation of the exceptional divisor,

which immediately implies the claim. O

The next lemma states that the structure of a weak local model behaves well under

taking Kirwan blowups and slices thereof.

Lemma 4.1.5. Let Ay = (U,V,Fy,wy,Dy,éy) be as in Setup 4.1.1. Let m : V —
V' be the Kirwan blowup of V associated with G. Then we have induced data Ay =
((7, ‘77F‘7’WX7’D\7’¢‘7)f where Fy is the blowup bundle of Fy, wp the blowup section and
Dy = m*Dy + 2E, that give a weak local model structure for V.

Moreover, for a slice S of a closed point x in V with closed G-orbit and stabilizer H,
we obtain induced data Ag = (T, S, Fs,wg, Dg, ¢s), where Fs is an H-equivariant bundle

on S with a section wg and the conditions of Setup 4.1.1 are satisfied for S as well.

Proof. By pulling back via 7 : V — V the factorization in (4.1), we obtain
W*Qv(—Dv) — 7T*FV M gv(—Dv).

Let E C V be the exceptional divisor. By slight abuse of notation, we use Dy to also denote
the pull-back of Dy to the blow-up. Then, applying (3) with R = G, 7*¢y factors through
g"(—FE — Dy). Using the obvious inclusion Qg (—E) — 7*Qy, we get that the morphism
Qp(—E — Dy) = gY(—FE — Dy) induced by the action of G, factors as

Qp(—E — Dy) — m*Qy(=Dy) — 7*Fy — g"(—E — Dy).

We have the following diagram

Qp(=E - Dv) W*fv g'(—E — Dy) (4.3)
Qp(—E — Dv)|lp —— (7"Fv) | ——¢"(=E — Dv)|&

L

™ (Fv[8)



CHAPTER 4. LOCAL CALCULATIONS 38

Note that
(7" Fv) B (Fvlf”) o (Fv[ve) (4.4)

and by equivariance we see that 7*¢y|p maps 7* <Fv|{;£) to zero inside g¥ (—F — Dy) |g.
This induces the last up-right arrow of the diagram. Therefore by taking kernels, we get a

factorization

A

05 1 Qo(=Dp) — For =% g¥(=Dy), (4.5)

where D = 2E + Dy. This shows (1) for V.

By looking at the diagram, we can easily see that it follows from the identical vanishing
of ¢y owy on V that ¢y 0wy vanishes identically on V. This is (2).

Let us check (3) on V. Away from the exceptional divisor E, ¢ is the same as ¢y and
hence we have the same vanishing on VE — E. On the other hand, on 17, Kirwan’s general
theory in [Kir85] guarantees that no new R can arise from the blow-up procedure and (V)%
is the proper transform of V. It readily follows that, since oo oy composed with the
projection onto t(—Dy;) is vanishing on V — E, it vanishes on (V) as desired.

Next we restrict (4.5) to a slice S in V. The fibration G xy S — G/H with fiber §

gives an exact sequence
— (g/h)" — Qpls — Qg — 0,

where b is the Lie algebra of H. The composition of the first arrow (g/h)" — Q|5 with the
homomorphism o : Qp|s — g¥ induced by the action of G is the inclusion (g/h)" < g".
Therefore (g/h)"(—Dy)|s is a subbundle of Qg (—Dy)|s and 7 Fy | as well as g¥(—Dyp)|s.
If we take the quotient of (4.5) restricted to S by (g/h)" (=D )|s, we obtain a factorization

o5 : Qs(—Ds) — Fs 25 §Y(~Ds) (4.6)

of the morphism og induced by the action of H on S, where Dy is the restriction of Dy to
S. This shows (1) for S. Finally, it is not hard to verify that (2) and (3) are also true. [

We may now give the following definition, which will be useful when we introduce the

concept of 2-compatibility later.
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Definition 4.1.6. We say that the data Ay = (U, V, Fy,wy, Dy, ¢v) give a local model for
V' if either they are the data of a d-critical chart Ay = (U, V,Qy,0,df) or are obtained by
such after a sequence of Kirwan blowups and/or taking slices of closed points with closed
orbit. We also say that U is then in standard form.

4.1.3 The relative case

In analogy with the absolute case, we give the following definition.

Definition 4.1.7. We say that the tuple Ay = (U,V, Fy,wy, Dy, ¢v) gives a relative local
model structure on U if V' is a smooth G-equivariant scheme over C, in addition to the rest

of the data satisfying Setup-Definition 4.1.1 and one of the following:

1. Fv = Qyyc, Dv =0 and ¢y : Qu)c — gV is the dual of the G-action. In this case,

we call Ay a quasi-critical chart on V.

2. Ay is obtained by a quasi-critical chart by a sequence of Kirwan blowups and taking

étale slices of closed points with closed orbit.

We then say that the C-scheme U is in relative standard form.

4.1.4 Obstruction theory of local model
Suppose that U is in weak standard form for data Ay of a local model on V.

Lemma 4.1.8. The following sequence is a complex:

oV dywy, v
Kv = [g —V) Tle % FV|U ﬂ> gv(—Dv)]. (47)

Proof. Since wy is G-invariant, the composition (de‘\ﬁ)v ooy = 0. Moreover, since ¢y o
wy = 0, by differentiating we obtain ¢y o (de‘V/)V = —w‘vf o dy ¢y, which is zero when

restricted to U = (wy = 0). This proves the lemma. O

Definition 4.1.9. (Reduced tangent and obstruction sheaf) We define the reduced tangent
sheaf and reduced obstruction sheaf of V' to be

T4 .= cokeroyr, and  Fi4 = ker ¢y

The section wy induces a section of F‘r/ed, denoted by w{/ed.
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The restriction of the complex (4.7) to the stable part U® of U gives rise (and is quasi-

isomorphic) to a two-term complex
Kred [(dV( red) ) :T\E'ed|US N red|U]

We denote coker(dv( redyv ) | by Obd. One can easily check that there are natural

isomorphisms
HYKy)|ys = HY(Ky|ps) = 065, (4.8)

We refer to Qb9 as the reduced obstruction sheaf. This is validated by the following

proposition.

Proposition 4.1.10. (Reduced obstruction theory) The dual of K{/‘?d induces a perfect
obstruction theory on the DM stack [U®/G].

Proof. On V*, oy, is injective and ¢y is surjective. The latter follows from the fact that the
surjective morphism oy, (—Dy ) factors through ¢y. In particular, the two terms of K {,ed are
bundles and U? is the zero locus of wisd|ys.

Let gy : V¥ — [V*/G] be the quotient morphism. We have the exact triangle of truncated

cotangent complexes
qVL[Vs/G] — L‘_/s — g — qVL[Vs/G][H

from which we deduce that T red\vs = qVT [‘—/9 ek Therefore, using the same triangle for U?,
we find that

qUL[Us/G] [Is/(IS) Ql\r/ed’Us]y

. . . v .
where I° is the ideal of U® in V*, O%d|ys = (T74]ys)" = keroy|ys = Qv a =

q{}L[Z_S}G} and that there is an arrow

d red\V
Kied |y, [Fred) s vev) 7]

i l (wred)

qUL[Us/G] — [I°/(I*)* — Qred’Us]

dy
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Therefore K1%4|;7s descends to a perfect obstruction theory on [U®/G]. O

Remark 4.1.11. Since the rank of Fy is equal to dimV, in order to obtain a zero-
dimensional virtual cycle, we need to replace Fy|ys by F{,Ed\Us, which has rank dimV —
dim G = dim[V*®/G]. Note that the surjective morphism Fy|ys ¢ gY(—=Dy) induces a
twisted cosection Obys — g”(—Dy) (c¢f. [KL13a]), which enables us to make the perfect

obstruction theory 0-dimensional.

4.2 (-equivalence

We introduce the following definition.

Definition 4.2.1. Let V' be a smooth affine G-scheme and Fy a G-equivariant bundle on

V. We say that two invariant sections wy,wy € I'(V, Fy) are Q-equivalent if
1. (wy) = (wy) =: Iy as ideals in Oy, and

2. there exist equivariant morphisms A, B: Fy — Ty such that

W = o + @y 0 AV o (dwy) (mod 17) (4.9)
@y = wy + wy o BY o (dwy) (mod 112]) : (4.10)

The reason for introducing this notion is the following proposition.

Proposition 4.2.2. Let U be an affine G-invariant d-critical scheme and (U,V, f,1) and
(U, V,g,1) two invariant d-critical charts (see Definition 5.1.1) with V' an affine, smooth

G-scheme. Then wy = df, wy = dg are Q-equivalent sections of Qy .

Proof. We may assume that f —g € [, 5, where Ij; is the ideal of U in V.
Let 1, ..., x, be étale coordinates on V. Let us write f; for E%’ fij for %&f;j and H; for
the Hessian of f for convenience (and similarly for g). Then we have Iy = (fi)i~; = (9:)7-;-

Moreover f —g € 1, (2] implies that

f=g+> a" gi g, d" eT(Oy). (4.11)
k,l
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Differentiating, we obtain for any 7 and pair (i, j) the relations

fi=gi+Y d" g g+ d" g gy mod I, (4.12)
k,l

kil
fij = 9ij + Zakl “gij * ki + Zakl “ gkj - g1 mod Iy.
k,l k,l
Note that we may re-write (4.12) as
wf =wy + Hyo Aodg(mod IZZJ),

where A is a morphism A: Qy — Ty.
Since df, dg and H are invariant, applying the Reynolds operator we can assume that

A is equivariant. Hence

wi =wy +w, o AV o (dyw,y) (mod I(Qj) , (4.13)
and similarly for g we have

w;/ = w}/ + wJY oBYo (de}/) (mod I7) . (4.14)

This proves the proposition. ]

The following two lemmas show that Q-equivalence is preserved by the operations of

Kirwan blowup and taking slices of closed orbits.

Notation 4.2.3. In what follows
Ay = (U,V,Fy,wy, Dy, ¢v), Ay = (U,V, Fy, v, Dy, ¢v)

will denote data of a weak local model structure on V. Similarly on the Kirwan blowup we
write
Ay = (U,V,Fg,wp, Dp, ¢p), Ay = (U,V

2
&l
S)
)
S)
RSN
<)

and on an étale slice thereof

AS = (T757F57w57D57¢S)7 ]\S = (T75>F5'>(DS’DS7¢S)'
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Lemma 4.2.4. Let V be a smooth affine G-scheme and Ay, Ay as above, such that wy, @y

are Q-equivalent with A, B as in (4.9) and (4.10). Then the blowup sections wg,wy are

Q-equivalent (via induced equivariant morphisms E, B: Fp — Tf,).

Proof. Let ip : E — V be the exceptional divisor of the blowup 7: V — V. We have

Nya,y = Ty|{}¢ and therefore the relative Euler sequence
0 — Op(E) — o (Ty[{}&) — Tgye(E) — 0. (4.15)
We also have the tangent sequence
0 — Tp 5 7Ty 5 5T o (E) — 0. (4.16)

Using these and the definition of F}; we have the following commutative diagram

0 Fo —>1*Fy Ty | —= 7 (Fy|7) (4.17)
\
A lw*A l l
v dm * * * mu
0 T"} ™ TV s TV|E4>7T (TV|VG‘)
(03
\\ \L
TE/VG(E>

By (4.15), (4.16) and (4.17) it follows that the composition fon* Ao~ is zero and therefore
we obtain an equivariant morphism A: Fp — Ty induced by 7% A.
It remains to check that A satisfies (4.9) for the blowup sections wy and Wy

Let us denote
n=uwy — oy —wyoAodyly (4.18)

where we consider 7 as a C-linear, equivariant morphism Fy/ — Oy.

It is easy to check that (4.9) is equivalent to n(e)) € I, where {e1,...,e,} is any local
frame for Fy .

Let us choose {ey,...,e,} to be a local frame for Fy (possibly after shrinking V' around
r € V&) with a linear action of G. We can find such a frame by lifting equivariantly a

basis of Fy |, to a neighbourhood of z, since G is reductive. We can also take a local frame
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{dz1,...,dz,} for Qy on which G acts linearly by a similar argument.
Since G acts linearly on ey, ..., e, we have a splitting Cley, ..., e,) = (C(wlfm) ® C{w]™)
fix

into invariant and moving subspaces. Then {7*w; ™, {7*w]*} is a local frame for Fy;, where

¢ is a local equation of the exceptional divisor of the blowup.

By equivariance, we see that
n((w]™)Y) € I3, n((wi™)") € (I)™ (4.19)

We can pull back (4.9) to obtain
Ty = 1wy + oy ot Ao 1 (dy@y) (mod 7 IF). (4.20)

The diagram of C-linear morphisms

*(dy oy, X .
“FY (var).q, =a TRy T 0, (4.21)
Vv Vv
M R
Vv . v
F17 dpwY, Qp v v
commutes when evaluated on the 77*6,2/ and hence
mrwy o AY o (de‘\f) = (D‘\A; oA o <d‘7®‘\§> oY, (4.22)
Therefore we may re-write (4.20) as
' = (w‘\é - G)‘Y/ - (D‘\é oA o (dwbé)) o~" (mod 77*112]) . (4.23)

For convenience, let us denote 7 = wY. — @Y. — @Y. 0 AV o (dA@Y).
’ N 1% Vv \% V=Y

By equivariance, we can un-twist by « (which is multiplication by ¢, the equation of the
exceptional divisor, on the moving part of 7*Fy) to obtain
=w

w

—@¥Y oA o (dﬁwg) (mod I%) (4.24)

<0<
<<

More precisely, we need to show that 77 maps the dual to a local frame of F; into I %
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(4.19) implies that
ﬁ(w*(wg‘“)V) € n(I3)/"  I2 (4.25)

and 1 ( *(w ;’“’) ) € 7*(I%)™". By the proposition following this lemma, we have (I%)™ C
I77° Iy and therefore
T (I5)™ C It Iy C €I
In particular %ﬁ (w*(w;’w)v) € I[%.
By the definition of A and equivariance, we have that A\V(df/é) e T (FP)Y C ng and
thus XV(%) € Fg Since

- 1 %/ mo 1 - */m 1_ %/ m d
‘\é 0AVo d‘A/w‘\é <£7r (wJ )\/> = gw‘%ozzl\/odr/w‘% (7T (w] v)V)_Ew‘\é (W (wj U)v) XX/ 0AVo
it follows that 7 <%7r* (w;m)v> = %ﬁ (7r* (w;m;)v> <mod I[%) and so
~(1 muv\V 2
n ETI‘ (wi™)" ) € If. (4.26)

Combining (4.25) and (4.26) concludes the proof and yields relation (4.9) for the blowup.
(4.10) for the blowup follows by the same argument.
O

Proposition 4.2.5. Suppose that V is a smooth affine G-scheme and U is an invariant
closed subscheme with ideal Iy C Oy. Then (I3)™ C IfIy.

Proof. Let f € (I#)™. Since the action of G on I3 is rational, f is contained in an

irreducible finite dimensional G-invariant subspace V' C (I3)™

on which G acts linearly.
Let W be the C-linear span of |J, V™ where T' stands for any maximal torus in G and
V" is the moving part of V' with respect to the action of 7. This is G-invariant, since
v € V7" implies that gv € Vggi;,l, and hence by irreducibility W = V. In particular, there
exists a finite collection {771, ...,T)} of maximal tori such that V is the span of Ule |Zie
We may thus write f = f1 + ... + fr with f; € (I[%)l}z“ C (IE)™.

By working with f; and T}, we may assume that G = T is a torus. By further splitting
f into its summands, we can assume that it is an eigenvector for the action of T' of weight

A. Since G is reductive, there are finite-dimensional G-invariant subspaces W/ C I{; % and
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W™ C I?” on which G acts linearly with diagonal bases {wzf Y and {w]*} respectively
such that f € W2 and twi™ = t)‘jwm” for t € G. Since W/=W™ 1771y, we may
further reduce to the case f = Zk’l aklwfw fiz +> 1w wi™ with agy, by € C. By the

G-action on f, we obtain

t)\f _ Z aklwfza: fix + Z bklt)\kJr)‘lew'wznv
k,l

and therefore

Zaklwfzw fza:+ Z bklw mu,, =0
k,l

Ap+A\=

and

Z bklw ’U) (I )CI{]nUIU,
e 70

which concludes the proof. O

Lemma 4.2.6. Let S be an étale slice of a closed point x € V with closed orbit and stabilizer
H. Let Ay, A\A/ be data of a weak local model on V such that Wiy, Wy

wg,ws be the two sections obtained as part of the weak local model induced on S using these

are Q)-equivalent. Let

two choices of data and Lemma 4.1.5. Then wg,ws are also §2-equivalent.

Proof. Let U be the zero locus of Wy (or equivalently wp) and T' be the zero locus of wg

(equivalently wg). The commutative diagram

—(g/h)" Qpls —= T 0
—(g/h)" g’ bY 0

qslr
induces an isomorphism of kernels Q¢ red — 0 |red

of o3, L7 and 0| respectively. Since
both exact sequences are locally split we may shrink S around z and find a (H-equivariant)
right inverse rg: Qg — Qs for gg, which is then also an inverse for gs|7 when restricted
to Qglked.

By the same argument for the commutative diagram (cf. the definition of Fg in the
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proof of Lemma 4.1.5)

0——=(g/h)" (—Ds) Fols ——~ Fyg 0

:

0—=(g/h)" (-Ds) —=g"(~Ds) —=hY(~Dg) —=0

we may find a right inverse dg: Fg — F‘A/\S, which is an inverse for vg when restricted to
Fg|§9d, the kernel of ¢g|7.

Consider the (non-commutative) diagram

7)4
Vv
F|p — =I5/ 2|7

vgﬁ lqs ng iqs

FY Qglr — = = FY Ir)I?

S|Tm> slr 2 5|T7g> r/17,

where we define ﬁg =8¢0 AV org. The left- and rightmost squares are commutative.
We check now that the composition gg o Q‘Y/ 0AV o dﬁw‘% 0§ is equal to @¢ o Zg odsw{.

By Lemma 4.1.5 and Lemma 4.1.8, the above diagram factors through the sub-diagram

AV v
Qp |5 Qplr Flr (Fpld)

lqg lqs ygT ng

\Y
Qglfd —— Qg7 5 Felr — (Fs|F9) "
S

Observe now that by the definition of @9 the outer square in this diagram commutes. This

immediately implies that indeed
gsowloA od Ao dswy. (4.27)

Since w¢ = gg o w‘l; o~d and w¢ = gg o JJ‘Y/ o4, applying gg o (e) o v to the restriction of
(4.9) to the slice S and using (4.27) we obtain

w\s/ :(Dg —f—of)g o}l\s/v ods(bg (mod I%)
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The exact same argument can be used to show the existence of Es. O

The next lemma states that for the purposes of comparing obstruction sheaves and
assignments we may replace a section by any (2-equivalent section without any effect.
Given two Q-equivalent wy,wy € HY(Fy), denoting U = (wy = 0) = (0y = 0), we

obtain

(dwxv/)v g (da’\\;)v lv: Tvly — Fvlu.

Lemma 4.2.7. Let V be a smooth affine G-scheme and Ay, Ay data of a weak local model

on V, such that wy,wy are Q-equivalent. Then
coker (dw\\ﬁ)v |t = coker (d(D‘V/)V . (4.28)

Moreover, the two obstruction theories on U induced by wy and wy give the same obstruction

assignments via the morphism (4.3.7).

Proof. We check that im (dwy,)" | = im (day)" |p. Since wy, @y are Q-equivalent, there

exist equivariant morphisms A, B: F' — Ty such that

wy =@y + @y 0 AY o (dwy)) (mod I7) , (4.29)
@y = wy 4wy o BY o (dwy) (mod I) .
Differentiating (4.29) and dualizing, we obtain
vV ERVANYS —Vv\V V)V
(dwy) " = (diwyy) " + (diwy,) " o Ao (diwyy) " (mod Iy). (4.30)

This implies that im (dwy/)" | € im (d&y,)" |- By the same argument, using the second
equation in (4.29), the first claim follows.
For the obstruction assignments, consider an infinitesimal lifting problem of U at p. Let

Ob = coker (dwy.)" | and
p: I &¢c Fyl, = I @c HY(E|,) = I ®c H'(E|,)

be the quotient morphism. Then by Lemma 3.1.5, we need to show that p(wy o ¢') =
p(wy o ¢'). But this holds, since dualizing (4.29) and composing with ¢’ we have that
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wyog —wyog €1®cim (dw‘\f)v |p- O

4.3 (l-compatibility

We begin with the following lemma, describing how normal bundles behave with respect

to Kirwan blowups. It will be used repeatedly in the rest of this section.

Lemma 4.3.1. Let &: V — W be a G-equivariant embedding of smooth affine schemes.
Let Ny be the normal bundle of V' in W, and let bl(Ny v ) as in Definition 4.1.3. Then

there is a natural isomorphism bl(Ny y) = N‘A///W.

Proof. Let & € V€. Up to shrinking, we have a commutative diagram

V T,V =A"

3] ld@

W — > T,W = Antm,

where the maps V — T, V, W — T,,W are equivariant étale and the G-action on the tangent
spaces is linear. Since G is reductive, we may pick coordinates x1,...,x, on A" on which G
acts linearly and extra coordinates x,, 1, ..., Zntm With a linear G-action on A" such that
the embedding A™ — A™™ takes the canonical form (z1,...,2,) = (z1,...,2p,0,...,0).
In particular, we get étale coordinates xi|w, ..., Tnim|w on W, x1|y,..., 2,y on V and
may also arrange that Iy = (zp41|lw, - Tntm|w)-

In what follows, we often write just x; in place of z;|y or z;|y by abuse of notation.

Let us assume that zq,...,z, and x,4y1,...,2n4¢ are moving and z,41,...2, and
Tngq+ls- -+ Tntm are fixed by G.

Since the question is local, we may localize at = and assume that V' and W = Spec A

are local and the maximal ideal of A is

m=(Z1,...,Zp, Tnil,-- - Tntq)-

Now W is covered by open affines of the form (for kK =1,...,p+q)

RZ = Spec A[Tk,h Ceey Tk,p+q] [{k]/(Tk,k — 1), (431)
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where z; = &1} if @ < p, Tp_pi = ETg if © > p and & = 0 is the exceptional divisor in
R} . 1t is easy to see that V is covered by such affines for £ < p and in each such we have

that

1 1
IA|Rn:<mn+1,...,xn+ T T )

q>*n+qg+1, s Ln+m
VT 3 3

::(Tkp+1w"7I%p+q7$n+q+1w"7xn+ﬂﬁ'

. . . . . 9 9

In particular, Ng /W| gy has a basis of sections given by T iy Foneass”
Since Ny, y has a basis by ﬁ%, we see that bl(Ny y) has a basis by & amiﬂ_ for

1 <i<gqand 9 for g+1< 7 <m. But 4 = §Tkpyi implies that édwxnﬂ =

Oyt j
Ay T p+i (mod 1‘7) and thus by dualizing sz%ﬂ, = ﬁw (mod I‘A,). We see that the
frames of the two bundles Ny Vi and bl(Ny/y,) match. This concludes the proof. O]

For the purposes of comparing obstruction theories obtained by embeddings of d-critical

charts and their Kirwan blowups and slices thereof, we introduce the following definition.

Definition 4.3.2. Let U C V 2 W be a sequence of G-equivariant embeddings of affine
G-schemes such that U is in standard form for data Ay = (U,V,Fy,wy,Dy,¢y) and
Aw = (W, Fw,ww, Dw,ow). We say that wy and ww are Q-compatible via ® if the
following hold:

1. Dy pulls back to Dy under ®.

2. The embedding ®: V — W induces a surjective equivariant morphism ne: Fy |y —

Fy, compatible with ¢w |y and ¢y, such that ne(ww|y) is Q-equivalent to wy .

3. Let Oby := coker (dwwyy)” |7, Oby := coker (dvwy,)" |v. Then ne induces an iso-

morphism

@Ck: ObW — Obv.

Remark 4.3.3. It makes sense to talk about an induced surjection ng, since the local data we
are considering arise either as the data of an embedding of d-critical charts or are obtained
by such an embedding by performing Kirwan blowups and taking slices. In the former case
ne s just pullback of differential forms and in the latter it is canonically induced starting

from pulling back differential forms and then blowing up or taking slices.
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The motivation behind the above definition is the following lemma.

Lemma 4.3.4. Let (U,V, f,i) 2, (R, W, g,7j) be a G-equivariant embedding of invariant d-
critical charts (see Definition 5.1.5), where V-.C W as before is a pair of smooth G-schemes.
Then wy = dg and wy = df are Q-compatible.

Proof. nge is pullback of differential forms and ne(wg|v) = wy. Moreover, we have exact

sequences

(dwwy)”
Tw |y —= Qwly —= Q —=0

e
(dvwy)”
Ty |y —% Qv ly Qu 0

from which we deduce that coker (dWw;/)v lu = coker(de}/)vw = Qu. We obtain an

isomorphism on cokernels induced naturally by 7e. O
In the rest of this subsection, we consider the following situation:

Notation 4.3.5. Let U C V 2 W be a sequence of G-equivariant embeddings of affine
G-schemes such that U is in standard form for data Ay = (U,V, Fy,wy, Dy, ¢y) and

Aw = (U, W, Fyy,ww, Dw, ¢w) and wy and wy are Q-compatible.

We now check that one may compare obstruction theories given by different data of a

local model with Q-compatible sections.

Lemma 4.3.6. Let Ay, Ay be as above. Consider the two complexes Eyy, By
_ (d w\/ )\/
(L5 Y —Ew = [Tw|y ——— Fwlu],

. (d w\/)\/
(L") —Ey = [Tv|y —— Fyly),

on U. The obstruction theories induced by the dual complezes Eyj,, EY give the same ob-

struction assignments via ®X.

Proof. Suppose we have an infinitesimal lifting problem at a closed point p € U. Let

PW - I®Fw|p — I®Obw|p and py: I®FV’p — I®Obv|p
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be the induced quotient morphisms. By Lemma 3.1.5, we need to show
% (pw (ww 0 ®og')) = py(wy og') (4.32)

Since ne (ww |y ) and wy are Q-equivalent, by Lemma 4.2.7, we may assume that ne (wy|y) =

wy .
Because of 1g 0wy 0 ® = wy, ¥ o pyr = py 0 e, and the commutative diagram

g Vv wy FV 2% Obv

I/q) T%W i

(4.32) follows. O

We now show that 2-compatibility is preserved under taking Kirwan blowups and slices

thereof. We begin with a preparatory lemma.

Lemma 4.3.7. Let Ay, Aw as above. Then the induced embedding of Kirwan blowups
: V — W induces a morphism Pk, Oby; — Obyp. The same is true for an étale slice of

a closed point ofﬁ with closed orbit.

Proof. We need to show that 7z maps im(dAwI//V\) p to im(dgy wA) |5~ Since ng maps

Ty |p into im(deA) 5> it suffices to show that the same is true for Ny, for any local

splitting Ti5|p = Ty @ Np

/W|U’

v/w:
1o satisfies the same requirement, so by the same reasoning we may find a morphism

a: Nyywlv — Ty|u such that the following diagram commutes (for a splitting Ty |y =
Ty @ Nyyw)

(dwwy )V
Nyywlo —=Twlv —= Fw|u

N I

TV|U VFV|U-

By Lemma 4.2.4 and Lemma 4.3.1, we have that bl(Tv) C Ty, bl(Twly) C Tyl and
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bl(NV/W) = Ny e We therefore obtain a commutative diagram
(dpwX)Y
Ny sl —bl(Tw|v) Twlg —> Fwlp
\ l%
bl(Ty|v) olg —=Fplo
(de{/)

where the composition

Tw|‘7 = Tf/ D N‘7

N\7/VAV|I7 — bl(Twlv) — Typlp comes from the induced splitting

i and the desired conclusion follows.

Let now S be an étale slice for W of a closed point x € V 2 W with stabilizer H and
T=Vn S, R= UNT =UNS. Then we have induced data A7, Ag of a local model on T
and S (cf. Lemma 4.1.5) respectively such that R is in standard form.

By the definition of wg,wr we see that the two horizontal compositions in the diagram

ps

Ts|r Twlr Filr Fs|p Obs
R A O
Tr|r Ty|r Folr Pr|gp = Obr

equal (dsw¢)Y and (dywy)¥. By Lemma 4.1.8 and an identical argument to Lemma 4.2.6,
in order to show that ng maps the image im(dsw¢)”|g into im(drwy)¥|r we may replace

all bundles by their reduced analogues and get a commutative diagram of sheaves

Ts[it! —— Tiplig? — Fplit! — Fsli;

S I R

Trlg Tylxe Fyl! — Pr[i

where all horizontal arrows except those in the middle are isomorphisms. It follows imme-

diately that we obtain an induced morphism ¥°: QObg — Obry. 0

Lemma 4.3.8. Let Ay, Aw be as above. Then the induced sections wy and Wiy (cf.

Lemma 4.1.5) are Q-compatible.

Proof. By Lemma 4.2.4, it readily follows that conditions (1) and (2) in the definition of
Q-compatibility hold for the respective Kirwan blowups.
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It remains to check conditions (3). By Lemma 4.3.7, we see that 7 induces a morphism
Pk Obg; — Obygy. Moreover, since 73 is surjective, ok is surjective. We need to check

that it is an isomorphism.

W w PW
TW’(? — FW|(7 Oby; 0 (4.33)
\LU@ l&;ck
p
Tolp g oo —— Obp —0.
(dv“";)

Consider a morphism A — ﬁ where A is the spectrum of a local Artinian ring. We will

show that £(Obg;|a) = £(Obp|a). Since length is additive in exact sequences, we have
L(Obg|a) = U(Fp|a) — U(ker pw|a) (4.34)

We have an exact sequence

(dwi)”la P pwla

Tipla wla

ObW‘A — 0.
Thus ker py|a = 1m(dAwA) |a and it follows that
er prwls) = Lim(dpe)V|a) = UTla) — (er(dmwl)’ls)  (4.35)
Notice now that
ker(d—w>-)"|a = coker ( d—w> . Q-4 4.36
er( /WWW) A = co er( WWWM) = Qp/a (4.36)

Therefore combining (4.34), (4.35) and (4.36) we get, since Fy;; and T} have the same rank,
(O 1) = UQI%).

An identical argument shows that £(Obg|a) = £(Q5|4).-

Since £(Obg;|a) = £(Oby|a) for all such A — U and ®° is surjective, we conclude that

@ is an isomorphism. O

Remark 4.3.9. It might seem counterintuitive that there is an induced map &DCk, given that
in the diagram (4.33) the derivative arrow Ty |5 — Tyl goes “the wrong way”. However,

the fact that we begin with d-critical charts and then perform Kirwan blowups allows us to
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show that this is possible. The corresponding situation for taking étale slices also owes to
the special properties of Kirwan blowups.

Moreover, the isomorphism property of Pk depends crucially on the fact that the 2-term
complezxes in question induce perfect obstruction theories on U. This enables us to show
that the kernels of (dWWYW)V|A and (d‘7w‘Y/)V|A are the same and hence obtain an equality
of lengths.

Lemma 4.3.10. Let Ay, Ay be as above. Let S be an étale slice for 1% of a closed point
eV 2 W with stabilizer H and T = Y/}QS, R=UNT=UnNS. Then we have induced
data Ar, Ag of a local model on T and S (cf. Lemma 4.1.5) respectively such that R is in

standard form and wp and wg are Q2-compatible.

Proof. By Lemma 4.2.6, ny(ws|r) and wr are Q-equivalent, since ne(wy|p) and wyp are.
Thus, by Lemma 4.3.7, conditions (1) and (2) of the definition of {2-compatibility hold.
Condition (3) follows by an identical argument involving lengths as in the previous lemma.

O]

The induced map ®° is independent of the particular choice of embedding ®.

Lemma 4.3.11. Let U ¢ V 2% W be G-equivariant embeddings of affine G-schemes such
that U is in standard form for data Ay and Aw, wy and ne(wwlv) are Q-equivalent, wy

and ng(ww|v) are Q-equivalent and the diagram

U——V

N

w

commutes. If &K = U then the induced morphisms on the Kirwan blowups satisfy Pk =
Uk, The same holds if we take slices of these blowups.

Furthermore, if Ay and Aw are data of d-critical charts for U, then we indeed have
Ok = Uk for any two choices of embedding V — W.

Proof. It suffices to show that if ne —ny maps Fiy |y to im(dywy,)¥ |y then the same is true
for ® — 0. Let us denote a = ne — ny for brevity.
Since a|y maps Fy|y to im(dywy,)¥|v, it follows that a factors as

B (d w\/)v
FW|U — TV|U V—V> FV‘U-



CHAPTER 4. LOCAL CALCULATIONS 56

Similarly to Lemma 4.3.7, we obtain a commutative diagram

g — Folg ——mFy|g

\ Tﬂ_*(de‘\;)\/
B

Fil

Hence yoa = m*(dywy,)" odr o B=~o (dﬁw‘Y/)V o3 on U, from which we deduce that
vo (a — (dpw¥)¥ o B) € m*Iyy - n* Fy, which in turn yields that & — (dpw¥)" o f € Iy - Fy
and therefore al; = (dﬁw‘%)vb o B|g, which implies what we want.

The proof for slices proceeds along the same lines of Lemma 4.2.6 and Lemma 4.3.7 and
we omit it.

Finally if the two sets of data give d-critical charts of U, we have ®* — U*: Oy —
imwy, C Oy for the map on coordinate rings and therefore by symmetry ne —ny: Qwlv —

im (dywy’) | = im (dywy)” |v € Qv |y, which implies the desired equality % = ¥k, O

The following lemma asserts that taking a slice gives compatible reduced obstruction

sheaves and assignments and concludes this section.

Lemma 4.3.12. Let (U,V, Fy,wy, Dy, ¢y) be the data of a local model on V. Let ®: S —
V' be an étale slice of a closed point of V' with closed G-orbit and stabilizer H and (T, S, Fs,ws, Dg, ¢s)
be the induced data on S.

Consider the diagram

(dvwy)Y v
Ky|lr==[g——Tv|r Fyr g"(=Dg)] (4.37)
Ks b TS|T(dSw§)VFS‘T bY(—Ds)]

The surjection ng: Fyy|s — Fs induces an isomorphism ®°: H'(Ky|r) — H'(Kg) which re-
stricts to an isomorphism Obl{fdhﬂs — Ob$Y, via which the dual complexes (K{/ed|T)v ) (ngd)v

give the same obstruction assignments on T
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Proof. We have a commutative diagram of short exact sequences

0 b g a/b 0

.

0 ——Ts|r —=Ty|r —=g/b —0

inducing an isomorphism Tg|}sd — Ty, |54

By the definition of Fg, we have a diagram of short exact sequences

0 —=(g/h)"(—=Dr) Fy|r Fs|r 0

l |

0—=(g/)"(~Dr) —=¢"(-Dr) —=h"(-Dr) —=0

and similarly we deduce that FV|E_,?d — F 5|§,‘?d is an isomorphism. Then the central square

of (4.37) factors through the commutative diagram

Ty [t — Fy [

]

st —— Fslfe,
where the vertical arrows are isomorphisms. We obtain an induced isomorphism H!(Ky |7) —
H'(Kg) restricting to an isomorphism Ob¢d|rs — Obd by (4.8) and the obstruction as-
signments of the reduced complexes must match by standard arguments as in the proof of

Proposition 4.3.6. O]

Remark 4.3.13. All of the above results on 2-compatibility are true if one replaces locally
closed embeddings ®: V. — W by unramified morphisms and Zariski open embeddings by
étale maps. This is because for our purposes it suffices to work étale locally and then Zariski
open maps correspond to €tale maps and locally closed embeddings to unramified morphisms.
We will tacitly use this observation in the following chapters and sections of the thesis.
One may alternatively choose to work in the complex analytic topology where everything

works verbatim.



Chapter 5

(—1)-shifted Symplectic Stacks and

their Truncations

5.1 D-critical loci

In this section, we recall Joyce’s theory of d-critical loci, as developed in [Joyl5], and
establish some notation.

We comment that there is also a parallel theory of critical virtual manifolds, developed
in [KL12], which is equivalent to the theory of d-critical loci for the cases considered here

and could alternatively be used as well.

5.1.1 D-critical schemes

We begin by defining the notion of a d-critical chart.

Definition 5.1.1. (d-critical chart) A d-critical chart for M is the data of (U, V, f,i) such
that: U C M is Zariski open, V is a smooth scheme, f: V — Al is a reqular function on
V and U 5V is an embedding so that U = (dy f = 0) = Crit(f) C V.

If x € U, then we say that the d-critical chart (U,V, f,i) is centered at x.

Joyce defines a canonical sheaf Sy; of C-vector spaces with the property that for any
Zariski open U C M and an embedding U — V into a smooth scheme V' with ideal I, Sy,

fits into an exact sequence
0 — Syly — Oy /T2 25 QL /1. Qb (5.1)

58
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Example 5.1.2. For a d-critical chart (U,V, f,i) of M, the element f + I*> € T(V, Oy /I?)

gives a section of Syr|u.-

Definition 5.1.3. (d-critical scheme) A d-critical structure on a scheme M is a section
s € I'(M,Sy) such that M admits a cover by d-critical charts (U,V, f,i) and s|y is given

by f + I? as above on each such chart. We refer to the pair (M, s) as a d-critical scheme.

For a d-critical scheme M and a Zariski open U C M, any embedding U — V into a

smooth scheme can be locally made into a d-critical chart.

Proposition 5.1.4. [Joyl5, Proposition 2.7] Let M be a d-critical scheme, U C M Zariski
open and i: U — V a closed embedding into a smooth scheme V. Then for any x € U,
there exist Zariski open v € U' C U, i(U') C V' CV and a reqular function f': V' — Al
such that (U, V', f' i|yr) is a d-critical chart centered at x.

In order to compare different d-critical charts, we need the notion of an embedding.

Definition 5.1.5. Let (U,V, f,i) and (R,W,g,j) be two d-critical charts for a d-critical
scheme (M, s) with U C R Zariski open. We call a locally closed embedding ® : V — W an
embedding between the two charts if f = go®: V — Al and the following diagram commutes

ity

L

R—1>W
By abuse of notation, we use ® : (U, V, f,1) — (R,W,g,7) to denote this data.
We then have the following way to compare different overlapping d-critical charts.

Proposition 5.1.6. [Joyl5, Theorem 2.20] Let (U,V, f,i) and (S,W, g,j) be two d-critical
charts centered at x for a d-critical scheme (M,s). Then, after possibly (Zariski) shrinking

V and W around x, there exists a d-critical chart (T, Z, h, k) centered at x and embeddings
o (UV, fi)— (T,Z,hk), ¥:(RW,g,75) = (T, Z,h,k).

5.1.2 Equivariant d-critical loci

For our purposes, we need equivariant analogues of the results of Section 5.1.1. The

theory works in parallel as before (cf. [Joyl5h, Section 2.6]).
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Definition 5.1.7. (Good action) Let G be an algebraic group acting on a scheme M. We
say that the action is good if M has a cover {Uy}aca where every U, C M is an invariant

open affine subscheme of M.

Remark 5.1.8. If M is obtained by GIT so that it is the semistable locus of a projective

scheme with a linearized G-action, then the action of G on M is good.

It is straightforward to extend Definitions 2.1, 2.2 and 2.3 and Proposition 5.1.4 in the
equivariant setting (cf. [Joyl5, Definition 2.40]).

Proposition 5.1.9. [Joyl5, Remark 2.47] Let G be a complex reductive group with a good
action on a scheme M. Suppose that (M,s) is an invariant d-critical scheme. Then the
following hold:

1. Foranyx € M fized by G, there exists an invariant d-critical chart (U, V, f,i) centered
at x, i.e. an invariant open affine U 3 x, a smooth scheme V with a G-action, an
invariant reqular function f: V — Al and an equivariant embedding i: U — V so that
U = Crit(f) C V.

2. Let (U,V, f,i) and (S,W,g,j) be two invariant d-critical charts centered at the fized
point x € M. Then, after possibly shrinking V. and W around x, there exists an
invariant d-critical chart (T, Z,h,k) centered at x and equivariant embeddings ® :
(U, V, f,0) = (T,Z,h, k), ¥ :(S,W,q,5) = (T, Z,h, k).

Remark 5.1.10. If G is a torus ((C*)k, then Proposition 5.1.9 is true without the assump-
tion that x is a fixed point of G.

Remark 5.1.11. There is a notion of d-critical locus for Artin stacks M (cf. [Joyl),

Section 2.8]). Then (cf. [Joyl5, Example 2.55]) d-critical structures on quotient stacks

[M/G] are in bijective correspondence with invariant d-critical structures on M.
Moreover, one may pull back d-critical structures along smooth morphisms between

stacks.

5.2 (—1)-shifted symplectic stacks

In what follows, we assume that C' = Spec S is a smooth affine curve over C. Whenever
we refer to a reductive group, we assume that it acts trivially on C. All cotangent complexes

and Kéhler differentials will be relative to C, unless noted otherwise.
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5.2.1 Derived algebraic geometry: introduction and local model

In this subsection, we give a very brief introduction on derived algebraic geometry, as
developed by Toén-Vezzosi and Lurie. Since we will be interested mostly in local calcula-
tions, we focus on the local picture. Results and properties that are quoted here can be
found in the exposition of [BBJ13, Sections 2,3].

In classical algebraic geometry, the fundamental building blocks are affine schemes
Spec R, where R is a commutative S-algebra. In derived algebraic geometry, we con-
sider commutative differential graded algebras (A®,d) (cdga’s) over S, which are negatively
graded. A cdga (A®,0) gives rise to the affine derived scheme Spec A® with underlying
classical truncation the affine scheme to(Spec A®) = Spec A* = Spec H(A®). Spec A® and
Spec A® have the same underlying topological space, but different rings of functions.

This analogy may be continued to define derived schemes and stacks. Derived Artin

stacks are oo-functors
M {commutative differential graded S-algebras} — {simplicial sets}

satisying certain conditions. M is an affine derived scheme if it is equivalent to Spec A*®
and a derived scheme if it has a Zariski open cover by affine derived schemes. As in the case
of affine derived schemes, M has a classical truncation to(M) = M, which is a classical
Artin stack. The categories of classical schemes and Artin stacks embed fully faithfully into
the category of derived Artin stacks.

Notions from classical algebraic geometry naturally translate into derived algebraic ge-
ometry. In particular, there is a notion of derived cotangent complex, sharing similar
properties with the classical cotangent complex, which is moreover preserved under base
change.

We wish to work with the following local model.

Definition 5.2.1. (Standard form cdga) We say that a cdga (A®,9) is of standard form if
A is a smooth S-algebra and, as a graded algebra, it is freely generated over A° by finitely

many generators in each negative degree (i.e. it is quasifree).

If A® is of standard form, then its derived cotangent complex L4« is represented by the
Kabhler differentials together with the internal differential (Q4e,d). We also have the usual
de Rham differential d on 24, so that we obtain a mixed complex. Moreover, L 4o @ HY(A®)

is a complex of free H°(A®)-modules.
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Definition 5.2.2. (Minimality) Let (A®,0) be of standard form and x € Spec A®. We say

that A® is minimal at x if all the differentials in L ge|; are zero.

If G is a reductive group acting on (A®,d) (and by our convention trivially on C'), then
we have analogous equivariant statements. We will consider minimality at x only when x
is fixed by G.

The next theorem shows that every derived scheme can be locally modelled by a minimal

cdga of standard form.

Theorem 5.2.3. [BBJ13, Theorem 4.1] Let X be a derived locally finitely presented C'-
scheme and x € X. Then there exists a Zariski open inclusion Spec A®* — X, mapping

p € Spec A® to x, where A® is a cdga of standard form which is minimal at p.

5.2.2 (—1)-shifted symplectic structures

We proceed to give a brief account of (—1)-shifted symplectic forms on an affine derived
scheme Spec A°®, introduced in [PTVV13].

Definition 5.2.4. ((—1)-shifted symplectic form) We say that w = (wo, w1, ...) is a (—1)-
shifted symplectic form on Spec A® if w; € (/\ZHQA-)J*Z' such that

1. wo gives a quasi-isomorphism L e — T ge[1],
2. dwy =0 and dw; + dw;y1 =0 for i > 0.

We refer to condition (1) as the non-degeneracy property and condition (2) as the closedness
property.
Two formsw,w’ are equivalent if there exist o; € (/\QHQA-)J% such that wo —w( = dag

and for all i >0, wiy1 — wi | = dog + davq1.

A (—1)-shifted symplectic form can be defined on a derived Artin stack by smooth
descent. Suppose now that the derived quotient stack [Spec A®/G| has a (—1)-shifted
symplectic form w, where A® is in standard form and minimal at a fixed point x. Then wy

induces a quasi-isomorphism

Lispec A+ /a)Ho(a%) = Tispec A /a)lmoas [1]-
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This implies that L 4o must have Tor-amplitude [—2, 0] and therefore A® is freely gener-
ated over A” in degrees —1 and —2 by generators y; € A~! and wy, € A~2 respectively. We

may write the above quasi-isomorphism as the following equivariant morphism of complexes

VJ Vll Q40 g’ (5.2)
g T (V)Y ——=(V2)Y

Since A® is minimal at the fixed point x, we may localize G-invariantly around x and
assume that the vertical arrows are isomorphisms. In particular, we obtain an isomorphism
V~l ~ Th. Let x; be a set of étale coordinates for A°. We may now choose generators
y; € A7! such that dy; € V! are the dual basis to dz; € Q40 under this isomorphism.
We may thus identify A~ and Tyo as A°-modules. Therefore the differential §: T 4o — A°

induces an invariant section w of 240 whose zero locus is precisely Spec H(A*®).

Definition 5.2.5. (Special cdga) We say that a cdga (A®,6) with a G-action, minimal at
a fized point x of G, is special if it is freely generated over A° in degrees —1 and —2 by
generators y; and w; respectively, together with an identification AL =V (where V71 is
as in (5.2)) mapping y; to dy;.

We denote U = Spec H(A®*) and V = Spec A°.

By Theorem 5.2.3, every finitely presented affine derived scheme is (up to Zariski shrink-
ing) equivalent to Spec A® with A® a standard form cdga and this is also true in the equiv-
ariant setting around a fixed point x of G. For more details, we refer to the proof of [BBJ13,
Theorem 4.1], which is valid in the equivariant setting as well. We deduce the following

proposition.

Proposition 5.2.6. Let U be an affine G-scheme over C, which is the classical scheme
associated to a derived affine G-scheme U such that the stack [U/G] is (—1)-shifted sym-
plectic with form w. Moreover, let © € U be a fixed point of G. Then, up to equivariant
Zariski shrinking, U is equivalent to Spec A®, where (A®,0) is a special cdga, minimal at x.

In particular, there exists a smooth affine G-scheme V- — C, a G-equivariant embedding
U — V over C minimal at x and an induced invariant 1-form w € HO(QV/C) such that
U= Z(w) CV is the zero locus of w.

We can use the above to understand the local structure of quotient stacks that arise as
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the truncation of (—1)-shifted symplectic derived stacks. The following proposition can be
deduced by work of Halpern-Leistner! [HL].

Proposition 5.2.7. Let M — C be a (—1)-shifted symplectic derived stack whose trunca-
tion M = [X/G] — C' is a quotient stack such that the action of G on X is good (and trivial
on C). Let x € M be a closed point with reductive stabilizer R. Then there exists an étale
morphism f: [T/R] — M, a point t € [T/R) fized by R, where T is equivalent to Spec A®
with (A®,0) a special cdga, minimal at t, mapping t to x and inducing the inclusion R C G
on stabilizer groups.

At the classical level, we get an étale morphism f: [T/R] — M. There exists a smooth
affine R-scheme S — C, a G-equivariant embedding T — S over C minimal at t and an
induced invariant 1-form w € HO(QS/C) such that T'= Z(w) C S is the zero locus of w.

Proof. Let © € U be a G-invariant affine open in X (such exists since the G-action on X
is good). Since U is affine and G is reductive, by [HL, Lemma 2.4], there exists an affine

derived G-scheme U = Spec B® such that we have a fiber diagram

U/G] ——> M

|

U/G] ——= M.

Let V = Spec B®. By Luna’s étale slice theorem, we may pick an affine slice z € S in V
and obtain an étale map [T'/R] — [U/G], where T = U N S, induced from the étale map
[S/R] — [V/G]. Using S — V, there exists a derived affine scheme T' = Spec C* with an

R-action and C° = B?, whose classical truncation is 7', fitting in a fiber diagram

[T/R] —[U/G]

L

[T/R] —[U/G].

where the lower horizontal arrow is étale. Therefore [T'/R] is (—1)-shifted symplectic and
we may apply Proposition 5.2.6 to deduce that T is equivalent to Spec A®, where (A®,J) is

special and minimal at . ]

LAt the time of writing of this thesis, it is available online at http://www.math.columbia.edu/~danhl/
derived_equivalences_2016_09_18.pdf.
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Remark 5.2.8. One of the main results of [BBJ13] is that, in the absolute case, if A® is
a standard form C-cdga with a (—1)-shifted symplectic form w, then up to equivalence and
possible shrinking we have w = (w,0,0,...), where wy = d$ and 6¢ = d® for ¢ € (2%)~?
and ® € A°. In particular, this implies that Spec H(A®) is the critical locus of ® inside
Spec A°. This also works equivariantly as in the above.

In [BBBBJ15], it is shown that the classical truncation of a (—1)-shifted symplectic Artin
stack inherits a d-critical structure. Thus one gets a truncation functor from (—1)-shifted

symplectic derived Artin stacks to d-critical Artin stacks.

5.2.3 Comparison of local presentations

We first examine how the 1-form w changes if one moves w within its equivalence class.

Proposition 5.2.9. Let (A®,0) be a special cdga, minimal at x. Suppose that w,n are
equivalent (—1)-shifted symplectic forms on [Spec A®/G]. Then, up to equivariant shrinking
of V' around x, these induce 1-formsw,n € HO(QV/C) which are Q-equivalent, meaning that:

1. We have an equality of ideals in A°, (w) = (n) = I .
2. There exist equivariant morphisms B,C: Qy,c — Ty,c such that
w' —nY =n"BYdnY (mod IIQJ)
and

n' —w' =w'CVdw" (mod I,2J) .

Proof. Let x; be an étale basis for V over C. As in the discussion preceding Definition 5.2.5,
we may write wo = Y, dy¥dx; and g = >, dy]dz;, where y¥ and y, are bases for A~ for

the 0-part of the pullbacks of w and 1 to Spec A®. Thus we have

v = Jaue vl =Y Jhue Jg,Jh € A°
k k
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The induced 1-forms are then given by
w= Zéyf dx; = Z Jh.skdx;, (5.3)
i ik

n= Zéyy dx; = Z J) skdai,
% i,k

where we write s; = dy; for convenience. Since y;,y¥, y; are all bases for A~1it is clear that
Iy = (0y;) = (6y%¥) = (dy;'), which proves (1).
Let dw; = Y, Wjiy;, where W;; € AY. Since 6%(w;) = 0 we have

Z Wjisi =0 (5'4>
1,

Now w,n are equivalent as symplectic forms so in particular we have wy — ng = dag for

some g € (/\QQ A')72~ By degree considerations, we may write

ag = Z Eijdyidyj + Z Fipdwrdx; + O/O, Eij, F;. € AO,
ij ik

where ) is a 2-form, whose every term is divisible by some of the y;, and we may assume

without loss of generality that Ej; is symmetric. Thus daf, € Iy - (/\291 .)_1 and we have

(5@0 = -2 ZEideidyj - Zszd(dwwd%Z (mod IU)

i, 1,k
= -2 Z Eijdsidyj - Z FZka]d$ldy] (HlOd IU) .
Y] B9,k

We have also
wo—mo0 =Y dyfdr; — Y dyld;

(2
=" dJgypdr; =Y Jgdyrdz; — > dTyedz; + Y T dypdz;.
ik ik ik ik
By comparing the coefficients of each dy;, we obtain a relation

> Jgdei = Jhdw; =2 Eyjdsi+ Y FyWijdz; (mod Iry)
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for each index j. Then, using (5.3),

w—n= Z(Jf,id:ci — Jdx;)sy, (5.5)
ik
=2 Eyds; sp+ Y FijWiespdz; (mod I)
ik ik
=2 ZEidei Sk (mod I%) ,
ik

where in the second expression the second term is zero using (5.4).

Note that in order to derive (5.5), we only used the fact that g; is a basis for A=1. So
we could repeat the exact same analysis and obtain a similar equation with s; replaced by
s¢ = dy¥ or s] = oy and Ey, by EY or E} respectively. It is then easy to see that these
exactly imply (2), with the coefficients of B, C' being determined by E%,, E! after averaging

over G to make the morphism equivariant (w — 7 is already invariant). O

Suppose now that we have étale morphisms fo: [To/Ro] = M and fg: [Ts/Rg] - M
as in Proposition 5.2.7, where T',, is equivalent to Spec A®* and T is equivalent to Spec B*®,
with A®, B® special equivariant cdgas. Let z € [T'o/Ra] X m [T 3/ Rg] be a closed point with
stabilizer H.

Note that f.,fs are also affine. Then, since T,,73 — M are affine, the diagonal
of M is affine, and a derived scheme is affine if and only if its truncation is affine, we
obtain that T, X T's is an affine derived scheme with an action of R, x Rg such that
To xpm Tp/Ra x Rg) is (—1)-shifted symplectic. Then, there exists a special cdga C*
with an H-action, minimal at ¢,g, such that we have H-equivariant morphisms a: A* —

C*, 8: B* — (' and a commutative diagram of étale arrows

Spec C*/H] —~ [Spec B*/Ry] (5.6)
e
[Spec A*/R,] M.

@

Moreover, the morphism [Spec C*/H]| — [T xpm T3/Ra % Rg| is étale and maps t,g to z.
We can recast the above data at the level of classical stacks and schemes. We have an
étale map fo: [Tn/Ra] — M, where T,, C S, is the zero locus of an invariant section wg of

Qs,/c and Sy — C' is smooth, R,-equivariant. Similar data is obtained for the étale map
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[T3/Rg) — M. The above diagram shows that we have the following comparison data:

1. We have an affine, smooth H-scheme S, — C' with an invariant section wqg of {2g_, /c
with zero locus Ti,3, minimal at a point ¢,g fixed by H. Here T, is the truncation

of the derived scheme Spec C*°.

2. There exist H-equivariant unramified morphisms 6,: So3 — S, and 0g: S, — S3,
inducing unramified morphisms T,,5 — T, and T, — T}.

3. Mo, (Wa), Mos(wp) are Q-equivalent to wyp.

4. We have a commutative diagram with étale arrows

[Tas/H| — [T/ Rg] (5.7)
4
[T/ R M.

[e3

Definition 5.2.10. (Common roof) If the above four conditions hold, coming from a dia-
gram (5.6), we say that the quasi-critical chart Ag,, is a common roof for the quasi-critical
charts Ags, and Ag,. More generally, the same definition applies to any two relative local

models which are not necessarily quasi-critical charts.

Remark 5.2.11. Suppose that we have a common roof coming from a commutative diagram
(5.6) where M = [Spec D*/G] and R, = Rg = H. Moreover, assume that we have two
compositions go: D* — A* — C® and gg: D* — B* — C* such that Specg., Specgg
become equivalent when composed with the quotient morphism Spec D®* — [Spec D*® /G| and
induce the diagram (5.6). If go, gs: Do — Co are the induced morphisms and we denote
V = Spec DO,

go =000 fo, gh =050 f5: OV s — OBE

are obtained by the corresponding maps from (5.6) on cotangent complexes of quotient stacks,

as in Lemma 4.3.12. It follows that for the (non-commutative) diagram of quotient stacks

[Spec C°/H] —— [Spec B/ H|

0ai lf/a

[Spec A°/H] —— [Spec D°/G].
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which is compatible with (5.7), there is a natural equivalence between the compositions 6%0 f8
and Og o fﬁb, which is also compatible with the commutativity of (5.7).

Another way to see this more concretely is when G is a Zariski open subscheme of
an affine space. This is the case in our application to Donaldson-Thomas invariants, since
closed points correspond to polystable sheaves whose stabilizers are products of general linear
groups. The fact that go, gz composed with Spec D* — [Spec D* /G| are equivalent implies
then that there exists a morphism h = Spech: SpecC® — G such that the composition

(idh)

S ,id
Specglﬁz SpecC®* ——= SpecC*® x G M

Spec D* x G — Spec D*,
where the last arrow is given by the group action, gives a map of cdgas D®* — C*® which is
homotopic to gg. In particular, the induced morphisms gg: DY — CY and 9,,8: DY — 9
satisfy gz — g’ﬁ: D 5 imC~! = imwxﬁ and thus, as in Lemma 4.3.11, we get that

95 = (g5)": OV g — OB

and the induced morphism h: Spec C°® — G gives the data for the equivalence mentioned

above.



Chapter 6

Generalized Donaldson-Thomas

Invariants

This chapter leads up to the main result of this thesis, the construction of the generalized
DT invariant via Kirwan blowups. We treat the cases of moduli stacks of semistable sheaves

and semistable perfect complexes.

6.1 The case of sheaves

For background on Gieseker stability of sheaves, we refer the reader to [HL10].

6.1.1 Obstruction theory of Kirwan partial desingularization of equivari-

ant d-critical loci

As in (2.1), let M = [X/G] be a quotient stack obtained by GIT. We have therefore
equivariant embeddings X C P C (PV)* with G acting on PV via a homomorphism
G — GL(N +1).

Suppose also that M admits a d-critical structure s € T'(M,Spq) so that (M, s) is a
d-critical stack. By Remark 5.1.11 this is equivalent to a G-invariant d-critical structure on
X.

In this section, we carefully follow the steps of Chapter 2 tailored to the case of a d-
critical locus to show that the Kirwan partial desingularization M admits a semi-perfect

obstruction theory.

70
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Let R(X) = {Ry, ..., R, {1}} in order of decreasing dimension.

Let x € X be a closed point with closed G-orbit, fixed by R;. Since the action of G is
good, we have a G-invariant affine open z € U C X. Therefore, we may apply the étale
slice theorem [Dré04, Theorem 5.3] to get a locally closed affine z € T C U such that
[T/R1] — [U/G] C [X/@] is étale. We thus obtain an étale cover

[TI72/ RO TTIX = GZR,)/G] — [X/G] = M,

where each T} is an Rj-invariant d-critical locus. In particular, for each « there exist data

of a local model (T}, 5%, Q%1 , dfs,0,061) with T} = (df, = 0) C S} in standard form and

we may take S to be affine, locally closed in P.
Let X7 = X be the Kirwan blowup of X; associated with R; and set X7 = X — GZp,.

Then we obtain an induced étale cover
[TI7s /R []X7/G) — [X1/G] = My € Py = [P/G).

For each a, we have induced data (fal, §é, Fg,wg, Dg, ¢g ) with T! = (wg =0) C §é C
P =: P,. Note also that [X1/G] — My factaors tcilrough /\ji as an open imnjersion.

Now Ry € R(X)) is of maximal dimension. Let € X; be a closed point with closed
G-orbit, fixed by Ry. Then its orbit will lie in X{ or it will be contained in the image of

some [T\al /Ri1]. Applying the same reasoning, we get an induced étale cover

TTI73 /R TTUT0 )/ Ra) T [1X5 /G — [X2/G) = My C Py = [P2/G,

where (fal)O =T —T'NGZpg,, X5 = X7 — GZp, and the various Tg C S% are étale slices
of G Xpg, Tal or X7 in standard form, where we may take SE to be slices in Py = Py.

Continuing inductively, we have for any n an étale cover

[Tz /20 T TTUTY° /R [ 15/ G) = M € P = [P0 /G,
where by abuse of notation we write
(T =T — GZp,,, NT". — ... — GZr, N T

i+1

and so on, and the T are appropriate slices of the elements of the étale cover for M,,_;.
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Note also that for each i, [(T1)°/R;] factors through an étale morphism to M.
We see that M = My, = [Xm/G] C [Pn/G], a DM stack, is the Kirwan partial
desingularization of M. We formalize the above procedure in the following proposition,

where we also keep track of obstruction sheaves and their comparison data.

Lemma 6.1.1. For each n > 0, let £X,EF be the union of all exceptional divisors in
M, and P, respectively. There exist collections of étale morphisms [T,,/Ra] — M,, and
[Sa/Ra) — Pr such that:

1. For each o, Ry, € {Ry,..., Ry}

2. Each Ty is in standard form for data (Ty,Sa, Fs,, ,ws,,Ds.,,¢s.) of a local model on
a smooth affine Ry-scheme S, C P,.

3. The collections cover EX and EL respectively.

4. The identity components of stabilizers that occur in M,, lie, up to conjugacy, in the

set {Rp+1, ..oy R }.

5. The data (T, Sy, Fs,,ws,, Ds,,¢s,) restricted to the complement of EP C P, are

the same as those of a d-critical chart on T,.

6. For o, and q € [To/Ra] % m,, [T/ Rg) whose stabilizer has identity component conju-
gate to Ry, there exist an affine Tog in standard form for data (Tog, Sap, Fag: Was, Dags Pap)

of a local model and an equivariant commutative diagram

//\\

Sp~——1Tj

\\//

mnducing a commutative diagram consisting of €étale maps on the corresponding quo-

(6.1)

tient stacks for arrows pointing downwards. Tng, Sap are étale slices for both Ty, Tg
and Sq, Sp respectively. All horizontal arrows are embeddings and 0,05 are unrami-

fied and Ry-equivariant. g, (ws,) and ng,(ws,) are Q-equivalent to wap.
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7. For each index «, consider the 4-term complex

(dwga)v $Sa. v
Ka = [ta — TSa|Ta E— FSa|To< — ta(_DSa)]7
where by convention we place Fs, |1, in degree 1. 0, induces an isomorphism 6%, : Obgejhéﬁ —
(’)bg?jﬁ. This does not change if we replace ws,, by any Q-equivalent section. Analogous

statements are true for the index 5.

8. We obtain comparison isomorphisms
b ._ (pb\—1pgb . d d
0a,3 = (65) '904' Obg?a |T;B — Obf;ﬁ |T§ﬁ'
These give the same obstruction assignments for the complezes K9, K};ed onTgs.

9. Let now q be a point in the triple intersection
q € [Ta/Ra] X p,, [Ts/Rs] Xm, [T5/ Ry

with stabilizer in class Rq. Then we have S, as in (6) for the indices o, B, Sp as in
(6) for the indices B,~y and S.q for the indices v, a with a common Ry-invariant étale
neighbourhood Sapg~ fitting on top of the diagrams of the form (6.1). The descents of

00 5. 0%, 60, to [T

o/ Rq] satisfy the cocycle condition.

Proof. For n = 0 there is nothing to show, as we may take an empty set of étale morphisms.
We proceed by induction. Suppose the claim is true for n.

Consider the locus of closed points € M,, whose stabilizer has identity component
conjugate to R,y1. Then, either x is in the image of some [T, /R,] or not.

Let’s examine the first case. Take [T,/R,] and consider all such closed points x €
[To/Ra]. For each x, let [T7/Ry11] — [Ta/Ra) be induced by an étale slice [S%/Ry41] —
[Sa/Ra]. Then we consider the collection of étale maps [i\f /Ry41] = Mpq1 together with
[T5/Ra] — Myy1 where T is the complement in T, of the locus of closed points with
stabilizer whose identity component is conjugate to R,+1. We may repeat this process for
all [T,/Ra] — M,, and x. We say that these étale maps are of type I.

So, consider x € M,, such that x does not lie in the image of any [T, /R,]. In particular,
by (3) « does not lie in £ and thus we may assume that it is a closed point of [X/G]. Then
there exist slices 7' C S C P such that T is in standard form for data (7,5, g, dfs,0,05)
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of a local model on S and we have étale morphisms [T'/R,+1] — My, [S/Rut1] — Ph.
Then, we may take étale maps [T\/Rnﬂ} — M1, [§/Rn+1] — Pp+1. We may repeat this
process for all such x. We say that these maps are of type II.

We have thus produced a collection of étale morphisms for M, 1 and Ppyq. It is
clear by our choice and the inductive hypothesis that (1)-(5) are automatically satisfied by
Lemma 4.1.5 and the properties of Kirwan blowups.

To check (6), the fact that the maps are unramified follows from the slice property since
the derivatives are injective around the point of interest. Furthermore, since by (5) the
restriction of a map of type I to the complement of Eff clearly yields rise to a map of type
IT for M,,41 it suffices to produce comparison data for maps of the same type.

Now, for two maps of type I, we may assume that S, in (6.1) factors through S% and Sg
and therefore we may use 0, and 63 to get comparison data, which satisfy the requirements,
since 2-equivalence is preserved by Kirwan blowups and taking slices by Lemma 4.2.4 and
Lemma 4.2.6.

For two maps of type II, coming from two choices of [T'/R,+1] — M and [S/Ry+1] — P,
we may find (up to shrinking), as in the proof of Proposition 2.3.7 and using the properties
of d-critical loci, a common étale refinement T3 — T, Tog — Tp with Thg = (Wap =

dfap = 0) C Sop and commutative comparison diagrams

Top — Sap (6.2)

| e

Ty — Sa

v

Al

fitting in a diagram of the form (6.1) for Mg := M and Py := P, such that 6,6z are étale
and dfals,s, dfsls,, are Q-equivalent to dfqp. Since (2-equivalence is preserved for Kirwan
blowups and taking slices, we see that (6) is satisfied in this case as well and exceptional
divisors pull back to exceptional divisors (cf. Lemma 4.1.5).

Finally (7) and (8) are an immediate consequence of the inductive hypothesis and
Lemma 4.3.12 of the preceding section. The existence of S,g in (9) can be seen, using
the inductive hypothesis for maps of type I, and the d-critical structure for maps of type

II. The cocycle condition follows from the commutativity of the diagrams of quotient stacks



CHAPTER 6. GENERALIZED DONALDSON-THOMAS INVARIANTS 75

induced by (6.1) and the fact that by construction 6% is induced by pullback, is functo-
rial with respect to compositions and both the reduced obstruction sheaves Obfgef and the
morphisms 6, descend to the level of quotient stacks. We note here that all the results of
Section 6 hold true if one replaces embeddings by unramified morphisms, so they apply to

the present situation as well (cf. Remark 4.3.13). O]

We are now in position to show that M = M, is equipped with a semi-perfect ob-
struction theory of dimension 0. Let [Th/Ra] — M be the cover granted by the previous
proposition. Each [T,/R,] is a DM stack and together they cover the strictly semistable
locus of M. Then for any © € M?, as in the proof of the preceding proposition, we have
an étale map T, — M, where T}, is a d-critical locus with T, C S, — P. The stable locus
M? is not affected during the partial desingularization procedure and so M?® is an open

substack of M and we get étale maps T, — M. We obtain an étale surjective cover

[Ti7./R ] T2 — M.

It is easy to check that the obstruction sheaves and assignments of the T, are compatible
with those of the cover [T,/R.] — M by an identical argument as in the above proof. We
thus see that the reduced obstruction theories indeed give a semi-perfect obstruction theory
of dimension 0 on M.

We have proved our main theorem.

Theorem 6.1.2. Let M = [X/G], where X is a quasi-projective scheme, which is the
semistable part of a projective scheme X1 with a linearized G-action. Suppose also that M
admits a d-critical structure s € T'(M,Snm) so that (M, s) is a d-critical stack. Then the
Kirwan partial desingularization M isa proper DM stack endowed with a canonical semi-
perfect obstruction theory of dimension zero induced by s, giving rise to a 0-dimensional

vir

virtual fundamental cycle [M]

Remark 6.1.3. Since at any point of our construction, we are working with stabilizers
of closed points and slices thereof, M and its obstruction theory are independent of the

particular presentation of M as a quotient stack [X/G].

Remark 6.1.4. If we replace the d-critical structure s by s = ¢ - s, where ¢ € C*, the

virtual cycle stays the same. This is because rescaling the d-critical structure is equivalent
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to replacing every d-critical chart (U,V, f,i) of X by (U, V,cf,i) and this does not affect the

intrinsic normal cone of the obstruction theory of M.

6.1.2 Definition of the DTK invariant

Let M = M?**(vy) be the moduli stack of Gieseker semistable sheaves with fixed Chern
character v on a Calabi-Yau threefold W. Let x: Oy — Ky be a trivialization of Kyy.

The stack M is the truncation of a derived Artin stack M. Moreover, by [PTVV13]
# induces a (—1)-shifted symplectic structure on M and therefore by [BBBBJ15] a d-
critical structure on M. M = [X/G] is obtained by GIT (cf. [HL10, Section 4]), where
G = GL(n,C), and we may rigidify C*-scaling automorphisms by taking G = PGL(n,C).
The conditions of Theorem 6.1.2 hold and we have the Kirwan partial desingularization M
and its virtual fundamental cycle [M]V',
Since choosing a different trivialization amounts to rescaling x and subsequently the

d-critical structure, by Remarks 6.1.3 and 6.1.4, the virtual cycle does not depend on the

choice of k or presentation as a quotient stack.

Theorem-Definition 6.1.5. (Generalized DT invariant) We define the generalized DT

invariant via Kirwan blowups of Chern character v to be

DTK(M) := deg[M]"™.

6.2 Deformation invariance

In this section, we use the relative versions of the results of this thesis, obtained via
derived symplectic geometry, to conclude that the generalized Donaldson-Thomas invariant
via Kirwan blowup is invariant under deformations of the complex structure of the Calabi-
Yau threefold W.

6.2.1 Obstruction theory in the relative case

As before, suppose that M — C is a (—1)-shifted symplectic derived stack, whose
truncation M = [X/G] is a quotient stack obtained by GIT, where X is a C-scheme and G

acts trivially on C.
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The Kirwan partial desingularization procedure goes through in exactly the same way
as in the absolute case. We have the following modified version of Proposition 6.1.1 in this
relative situation.

The main difference stems from the fact that we need to use local models, arising from
special cdga’s (cf. Definition 8.8), which satisfy a minimality property (cf. Definition 8.6).
Here, for the sake of full generality, we no longer use slices S, coming from a global embed-
ding M — P into a smooth stack and we will need to use the notion of (2-compatibility to
address the issue of extra coordinates. In particular, in the analogue of diagram (6.1), we

will be missing the arrows So — Py, Sg — Pp, and S,, Sz can have extra coordinates.

Proposition 6.2.1. For each n > 0, let E,)f be the union of all exceptional divisors in M,,.

There exist collections of étale morphisms [Ty /Ra] — My, such that:
1. For each o, Ry € {Ry, ..., Ry }.

2. Fach Ty, is in relative standard form for data
Asa = (TCM? Sa7 Faa Wa, Da7 ¢a)

of a relative local model on a smooth affine Ry-scheme S,,.
3. The collections cover EX.

4. The identity components of stabilizers that occur in M, lie, up to conjugacy, in the
set {Rp+1, ... R }.

5. Ag, restricted to the complement of the union of exceptional divisors Es, C So are

the same as those of a quasi-critical chart on T,.

6. Forindices o, f and q € [To/Ra] % m,, [13/Rg] whose stabilizer has identity component

conjugate to Ry, there exist an affine T,p in relative standard form for data

Asaﬂ = (Ta67 Saﬂ? Faﬁuwaﬂv Daﬂu ¢Cxﬂ)
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of a relative local model and an equivariant commutative diagram

7 N

Soq<=— T — Sp

such that Ag, , is a common roof for As, and Ag, coming from a diagram of the form

(5.6). Moreover, 8, factors as Sag — Si, — S where S., is an étale slice for S, at

the image of q, Top — T}, is étale and Sop — S, is unramified. Analogous conditions
hold for the index (.

7. For each index «, consider the 4-term complex

(dwg, )Y b5,
Ko = [ta — Ts, |1, —2— Fa|r, —2 Y (=Dy,)],

where by convention we place Fs, |z, in degree 1. 0, induces an isomorphism 07, : Obrse;ih;ﬁ —
(’)bgefﬁ. This also does not change if we replace wg,, by any Q-equivalent section. Anal-

ogous statements are true for the index [3.

8. We obtain comparison isomorphisms
0a,3 = (9%)—193 red|TS N Obred’TS

These give the same obstruction assignments for the complezes K};ed, K};ed onTgs.

9. Let now q be a point in the triple intersection

€ [To/Rao] Xm,, [Ts/Rgl xm, [T5/ Ry

with stabilizer in class Ry. We then have a commutative Ry-equivariant diagram of
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common roofs

Aaﬂ”/

SN

Aaﬁ,ﬁv AB%W

A / \A e \A
N N N
Ay Ag A, Ay

such that all the morphisms between local models Ay — A,, where X, are multi-
indices, satisfy the properties of a roof, the morphisms T\ — T}, are étale, and we have
induced isomorphisms (’)bzed\T; — Obd. The descents of 936’9%7’9:01 to [Tys,/Rq]

satisfy the cocycle condition.

Proof. In the same way as in the absolute case, all conditions (1)-(9) are preserved at each
inductive step. So we only need to check that they hold in the beginning and also address
the differences in (6), (7) and (9) from the absolute case.

By the previous subsection, roofs exist and they satisfy the conditions of (6) by con-
struction, since we may first replace To /R, by an étale slice T,’/H (and similarly for the
index () and then take a common roof. In particular, by Lemma 4.3.8 and Lemma 4.3.12
we immediately deduce that 6% indeed induce isomorphisms on the reduced obstruction
sheaves. It is at this point where we have to use the notion of Q2-compatibility to deal with
possible extra coordinates.

Finally, the cocycle condition holds by applying Remark 5.2.11 and using Lemma 4.3.8,
4.3.10, 4.3.11 and 4.3.12, which are valid in the relative setting, and going through the
appropriate diagrams of roofs granted by (9). We leave the details to the reader. O

We have shown that we can follow the same steps as in the absolute case to obtain the

following theorem.

Theorem 6.2.2. Let M = [X/G] — C, where X — C' is a quasi-projective scheme, which
is the semistable part of a projective scheme X' — C with a linearized G-action and C
is a smooth, quasi-projective curve with a trivial G-action. Suppose also that M is the
truncation of a relative (—1)-shifted symplectic derived stack M over C. Then the Kirwan

partial desingularization M= Cisa proper DM stack over C' endowed with a canonical
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relative semi-perfect obstruction theory induced by the relative (—1)-shifted symplectic form,
giing rise to a virtual fundamental cycle [//\/lv]"ir.
Furthermore, the restriction of the obstruction theory to the fiber /\70 over a point ¢ € C

is the semi-perfect obstruction theory of Theorem 6.1.2, constructed in the absolute case.

6.2.2 Deformation invariance of DTK invariants

Let W — C be a family of Calabi-Yau threefolds over a smooth affine curve. The
relative canonical bundle Ky /¢ is then trivial.

Let M be the moduli stack of relatively semistable sheaves over C' of Chern character
v on W. As in the absolute case, a trivialization of Ky /o induces a relative (—1)-shifted
symplectic structure on the derived stack M — C. Then by Theorem 6.2.2, it follows
that applying the same construction we obtain a Kirwan partial desingularization M=C
with a relative semi-perfect obstruction theory, which induces the absolute semi-perfect
obstruction theory on each fiber Mvc we constructed earlier.

Moreover, its fiber over ¢ € C is the Kirwan partial desingularization of the moduli
stack of semistable sheaves on W, by the results of Section 2.4. Therefore, by “conservation
of number” for semi-perfect obstruction theories [CL11, Proposition 3.8|, the generalized
Donaldson-Thomas invariant stays the same along the family, i.e. DTK(M,) is constant

force C.

Theorem 6.2.3. The generalized DT invariant defined in Theorem-Definition 6.1.5 is in-

variant under deformation of the complex structure of the Calabi- Yau threefold.

Remark 6.2.4. Choosing a different trivialization of Ky c amounts to rescaling the in-
duced trivializations of Ky, on each fiber, so by Remark 6.1.4 our discussion does not

depend on the specific choice of trivialization.

6.3 The case of perfect complexes

In this section, as usual W will denote a smooth, projective Calabi-Yau threefold over
C. We first describe the stability conditions o on D?(Coh W) that we will be interested
in. We then quote relevant results from the theory of ©-reductivity, which are necessary in
order to apply a criterion for the existence of a good moduli space. We proceed to show that

moduli stacks of o-semistable complexes are stacks of DT type and explain how to rigidify



CHAPTER 6. GENERALIZED DONALDSON-THOMAS INVARIANTS 81

the C*-automorphisms of stable objects. Finally, we define generalized DT invariants via
Kirwan blowups and state a sufficient condition for their deformation invariance.
We will be interested in stacks which are nicely behaved in the sense of the following

definition.

Definition 6.3.1. (Stack of DT type) Let M be an Artin stack. We say that M is of DT
type if the following are true:

1. M 1is quasi-separated and finite type over C.

2. There exists a good moduli space w: M — M, where w is of finite type and has affine

diagonal.
3. M is the truncation of a (—1)-shifted symplectic derived Artin stack.

Remark 6.3.2. A stack M parametrizing Gieseker semistable sheaves on W of a fixed
Chern character is of DT type.

6.3.1 Stability conditions

By [Lie06], there is an Artin stack Perf(W) of (universally gluable) perfect complexes
on W, which is locally of finite type. We will be interested in the following setup.

Setup 6.3.3. Consider the data:
1. A heart A C D*(Coh W) of a t-structure.
2. A wvector v € H*(W,Q).
3. A stability condition o on D?(Coh W).
These are required to satisfy the conditions:

1. The stack M := M?75%5(~) of o-semistable objects in A of Chern character -y is an
Artin stack of finite type.

2. M is an open substack of Perf(W).

3. M satisfies the existence part of the valuative criterion of properness. We then say

that M is quasi-proper or universally closed.
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4. Any modification of a map Spec R — M, where R is a discrete valuation ring, can be

factored as a sequence of elementary modifications.

Let us explain the last condition in more detail. Let R be a discrete valuation ring
with fraction field K and closed point s € Spec R. Consider a morphism h: Spec R — M,
corresponding to a complex F € D*(Coh Wg).

Definition 6.3.4. A morphism h': Spec R — M is called a modification of h if hy ~ h.

Let us write F§ for the (derived) restriction of F' to the special fiber W X W. Consider
an exact sequence
0—F—F,—Q—0
in A. By adjunction, this induces a map F — i,Q. Let G be its kernel.
Definition 6.3.5. G is called the elementary modification of F at Q.

These definitions explain the meaning of condition (4) above.

Remark 6.3.6. If G is an elementary modification of F, then we obtain another exact
sequence

0—Q —Gs— E—0.

Hence Fs and G are S-equivalent. In particular, if Fx is the complex corresponding to
a morphism Spec K — M, any extension Fr to a family over Spec R is unique up to

S-equivalence.

Definition 6.3.7. (Stability condition) A stability condition o on W will be one of the

following:
1. A Bridgeland stability condition in the sense of Toda-Piyaratne [PT15].
2. A polynomial stability condition in the sense of Lo [Lo11, Lo13].

3. A weak stability condition in the sense of Joyce-Song [JS12, Definition 3.5], where we
take A = Coh W and K(A) = N(W), such as Gieseker stability and slope stability.

By the results of the mentioned authors, these satisfy all the required properties given in
Setup 6.5.5.

Remark 6.3.8. More generally, one may consider any set of data that make the conditions
of Setup 6.3.3 true.
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6.3.2 O-reductive stacks

O-reductivity is a notion that will be helpful in the following subsections. We state the

definition and properties we will use.

Definition 6.3.9. [Hall4, Definition 2.27] Let © = [A'/G,,]. We say that M is O-
reductive if for any discrete valuation ring R with fraction field K and any morphism

Ok Uspec Kk Spec R — M there exists a unique extension O — M.

Lemma 6.3.10. [Hall4, Lemma 4.22] Let A C DY(W) be the heart of a t-structure. The
moduli stack M(vy) of objects in A of Chern character v is O-reductive.

Proposition 6.3.11. If o is a stability condition on W, then the stack M°~%5(~) of o-

semistable objects of Chern character ~y is ©-reductive.

Proof. This is a formal consequence of the previous lemma. It suffices to notice that the
proof of Lemma 6.3.10 goes through if one replaces the heart A C D°(W) with an abelian
subcategory C C A and that o-semistable objects of fixed slope ¢ (determined by ~y) form

an abelian category. O

6.3.3 Moduli stacks of semistable complexes are of DT type

We will make use of the following criterion.

Theorem 6.3.12. [AHLH] Let M be an Artin stack of finite type over C with affine diag-

onal. Suppose that the following are true:
1. Closed points of M have reductive stabilizers.
2. M is O-reductive.

3. For every discrete valuation ring R with fraction field K and any morphism h: Spec R —
M with an automorphism ¢ € Aut(hg) of finite order, there exists h': Spec R — M
such that by ~ hi and ¢ extends to an element of Aut(h’).

Then M admits a good moduli space m: M — M.

Remark 6.3.13. Property (3) is a special case of what is called “unpunctured inertia”. It

is also true that if M has connected stabilizers then M has unpunctured inertia.
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From now on, we write M = M77%%(~y) for convenience, where ¢ is one of the stability

conditions of Definition 6.3.7. We immediately obtain the following corollary.
Theorem 6.3.14. [AHLH] M admits a good moduli space m: M — M.

Proof. We will apply the previous theorem.

Closed points of M correspond to polystable objects. Their stabilizers are products of
general linear groups and hence reductive. This shows (1).

By Proposition 6.3.11, we know that M is O-reductive. This shows (2).

Finally, if ¢x is an automorphism of hx: Spec K — M, i.e. a semistable perfect
complex £ ® K of Oy ® K-modules, then since the objects of M lie in an abelian category
A, we have an injection £ — E ® K by the arguments of [Hall4, Lemma 4.22]. hg is of
finite order and so we may decompose E ® K = €, E}‘{ as a direct sum of eigenspaces for
different roots of unity A\. Then, we clearly obtain £ = @, EN Ef‘( and we may extend hg
by acting by multiplication by A on each summand E N Ey. This shows (3) and concludes
the proof. Alternatively, M has connected stabilizers, so we can also use the preceding

remark to conclude. O
We also have the following proposition.

Proposition 6.3.15. M is separated and of finite type. m: M — M is of finite type with
affine diagonal.

Proof. Since M is of finite type over C, the same holds for M by Proposition 2.5.2(7). By
Proposition 2.5.2(3), M parametrizes S-equivalence classes of complexes in M. It follows
by condition (4) of Setup 6.3.3 and Remark 6.3.6 that M must be separated.
We have a diagram
M 27 M x MM—M

ok

MxM——-MxM

where the right square is cartesian. Since M is separated, « is a closed immersion and hence
by the usual cancellation property, since the diagonal of an immersion is an isomorphism,

and A, is affine, we deduce that A is affine. O

By condition (2) of Setup 6.3.3, M is an open substack of Perf(WW). Since W is a
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Calabi-Yau threefold, by the results of [PTVV13], Perf(W) is the truncation of a (—1)-
shifted symplectic derived Artin stack. In particular, M is the truncation of a (—1)-shifted
symplectic derived Artin stack.

We have therefore verified the assertion of the following theorem.

Theorem 6.3.16. Let o be a stability condition as in Definition 6.5.7 and W a Calabi- Yau
threefold. Then the moduli stack M?~5%(~y) of o-semistable objects in A of Chern character
v is an Artin stack of DT type with separated good moduli space M .

6.3.4 Rigidification of C*-automorphisms of objects

Let M be as in Theorem 6.3.16. We denote T' = C*.

To obtain a meaningful DT invariant, it will be necessary to rigidify the C*-automorphisms
of objects in M.

For each family of complexes Eg € M(S) there exists an embedding

Gm(S) — Aut(Es)

which is compatible with pullbacks and moreover G, (.S) is central. In the terminology used
in [AGV08], we say that M has a G,,-2-structure.

Using the results of [AOV08] or [AGVO08]|, we may take the G,,-rigification M JG,,
of M. From the properties of rigification, for any point z € M, one has Autpryg,, (z) =
Autr(z)/T. In particular, if ¥ € M? is stable, then Aut g, (v) = {id}. M Gy, has the
same good moduli space M and, as in Section 4, an étale cover by cartesian diagrams of

the form

[Ua/(Ga/T)] M [[G

| l

UaJJ(Go/T) = Uy /)G M.

We may now replace M by M [/G,, and carry out the Kirwan partial desingularization
procedure to get a DM stack M. One may check that the results of Chapter 2 go through

by identical arguments.

Lemma 6.3.17. M is a proper Deligne- Mumford stack.
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Proof. Since M is quasi-proper by condition (3) of Setup 6.3.3, M //G,, is also quasi-proper.
Since M is quasi-proper over M /G, M is also quasi-proper.

It thus remains to show that M is separated. We first check that the map 7: M= M
is separated. By the above discussion we may assume that this map is of the form [U/G] —
U//G where U is affine and G is finite. But this is separated by a standard fact from GIT
(cf. [MFK94, Proposition 0.8]). In particular, we deduce that

is proper.

Since M is also separated (it is proper over M), the cartesian diagram

M (6.4)

shows that M X7 M — M x M is a closed embedding. It immediately follows that the
diagonal M= M x Mis proper. ]

Remark 6.3.18. In the case of semistable sheaves, Tigidification is much simpler, since the
moduli stack is a global GIT quotient M = [X /G| where G = GL(N, C), and then one may
work directly with [X/PGL(N, C)] which is the G, -rigidication.

We can also first take the Kirwan partial desingularization and then rigidify: We may
follow the same steps as in Chapter 2 to obtain an Artin stack M’ whose stabilizers are
all of dimension one, by resolving all higher dimensional stabilizers in order of decreasing
dimension. Moreover, for any object Eg € M’(S ) we get an induced embedding G,,(S) —
Aut(FEg), compatible with pullbacks, such that G,,(S) is central.

By construction, M’ has a good moduli space M and is covered by étale morphisms
[Us/Gal = M

where each [U,/Gy] is in standard form for data A, = (Uy, Va, Fo, Wa, @a)- It has a G,-2-
structure, compatible with the one of M , so that T' C G, acts trivially on U,.



CHAPTER 6. GENERALIZED DONALDSON-THOMAS INVARIANTS 87

Then we have the G,,-rigification M [ Gy, of M. From the properties of rigidifica-
tion, for any point # € M, one has Aut/q,ﬂgm (x) = Autﬂ,(j)/T, and this is now zero-
dimensional, hence finite. In particular, G, /T is finite and M’ JG,, is then a DM stack,

which has the same good moduli space M. Tt has an étale cover of the form
Ua/(Ga/T)] = M [JGy

Each [U,/Ga] comes with a 4-term complex

(d, )"

G = Ty, v, —225 Falu, 2% gY(=Da). (6.5)

Setting t = Lie(T'), we see that the compositions t = go — Ty, |v, and Fu|u, — g2(—Da) —
tV(—D,) are zero, since the T-action on V,, is trivial and by property (3) of Setup 4.1.1. It

follows that we have an induced 4-term complex

(dt,)”

oV

9o/t = Tv, v, Folva = (8a/t)"(=Da), (6.6)

with injective first arrow and surjective last arrow, since [U, /(G /T)] is DM. As in Chapter
4, by taking the kernel and cokernel of these two arrows, this yields a reduced 2-term complex

d(wge?)

giving a reduced perfect obstruction theory on [U,/(Go/T)]. These glue to a semi-perfect
obstruction theory on M’ [/Gp,.

It is easy to observe that the following proposition is true.

Proposition 6.3.19. We have an isomorphism M~ M’/Gm and a commutative diagram

M ——> M= M [Gy — M

L

M MG, M,

where the vertical arrows are the Kirwan desingularization morphisms.

Combining the above, we get the following theorem.
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Theorem-Definition 6.3.20. M is called the C* -rigidified Kirwan partial desingulariza-
tion of M. It is a proper DM stack with a morphism M = M [ Gy and a semi-perfect

obstruction theory of virtual dimension zero.

Remark 6.3.21. By identical reasoning, all of the above hold in greater gemerality when
M is an Artin stack of DT type with a G,-2-structure.
An alternative way to rigidify when the objects of M7~*%(~y) have non-zero rank, would

be to consider the moduli stack M7 **(v) of fixed determinant L.

6.3.5 Definition of the DTK invariant

Suppose as before that M is an Artin stack of DT type parametrizing o-semistable
objects in a heart A of a t-structure. Then there is an induced C*-rigidified Kirwan partial
desingularization M with a good moduli space M and its induced semi-perfect obstruction
theory and virtual cycle of dimension zero.

Combining all of the above, Theorem-Definition 6.3.20 yields the following;:

Theorem-Definition 6.3.22. Let W be a smooth, projective Calabi-Yau threefold, o a
stability condition on a heart A C DY(X) of a t-structure, as in Definition 6.3.7, and
v € H*(W). Then we may define the generalized Donaldson-Thomas invariant via Kirwan

blowup as
DTK (M7 %5(v)) := deg [M7 55 ()]

6.3.6 The relative case

Let C' be a smooth quasi-projective curve over C and W — C' be a family of Calabi-Yau

threefolds. We make the following assumption.

Assumption 6.3.23. There is a family oy of stability conditions, where, for each t € C,
ot is as in Definition 6.3.7, stability is an open condition and we have a stack M — C
of relatively semistable objects in D*(Coh W). This parametrizes perfect complexes E such
that the (derived) restriction E, = Elw, is oi-semistable for all t € C. Moreover, the

morphism M — C' is universally closed.

Remark 6.3.24. When we have a GIT description of M — C, then Assumption 6.3.23 is

satisfied. This is the case for Gieseker stability of coherent sheaves.
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Given this, all the above results extend to the relative case, since we have analogous
results for good moduli spaces, the local structure of stacks with moduli spaces, Kirwan
partial desingularizations and semi-perfect obstruction theories. In particular, a Luna étale

slice theorem for stacks over a general base will appear in [AHR].

Theorem 6.3.25. Let f: W — C be a family of Calabi- Yau threefolds over a smooth, quasi-
projective curve C, {o:}ec a family of stability conditions on D®(Coh W), v € T'(C, Rf.Q)
and M — C' the stack of fiberwise o;-semistable objects of Chern character y; in D®(Coh W),
satisfying Assumption 6.3.23.

Then there exists an induced C*-rigidified Kirwan partial desingularization M= C,a
proper DM stack over C, endowed with a semi-perfect obstruction theory of virtual dimen-
ston zero and a virtual fundamental cycle [.//\Z]Vir. Mvt is the C*-rigidified Kirwan partial
desingularization of My and the obstruction theory restricts to the one constructed in the

absolute case.
As an immediate corollary, we have the following theorem.

Theorem 6.3.26. The generalized DT invariant via Kirwan blowups is invariant under

deformations of the complex structure of the Calabi- Yau threefold.

Remark 6.3.27. Assumption 6.3.23 is not too much to ask for. Upcoming work announced
in [BLM"] will establish it in the cases of stability conditions that we consider in Defini-

tion 6.3.7 and therefore the above theorem holds unconditionally.



Bibliography

[AGVO08]

[AHLH]

[AHR]

[AHR15]

[Alp13]

[AOVO08]

[Bay09]

[BBBBJ15]

[BBD+12]

[BBJ13]

Dan Abramovich, Tom Graber, and Angelo Vistoli. Gromov-Witten theory of
Deligne-Mumford stacks. Amer. J. Math., 130(5):1337-1398, 2008.

Jarod Alper, Daniel Halpern-Leistner, and Jochen Heinloth. To appear.

Jarod Alper, Jack Hall, and David Rydh. The étale local structure of algebraic

stacks.

Jarod Alper, Jack Hall, and David Rydh. A Luna étale slice theorem for
algebraic stacks. ArXiv e-prints, April 2015.

Jarod Alper. Good moduli spaces for Artin stacks [bons espaces de modules

pour les champs d’Artin]. Annales de l'institut Fourier, 63(6):2349-2402, 2013.

Dan Abramovich, Martin Olsson, and Angelo Vistoli. Tame stacks in positive
characteristic. Ann. Inst. Fourier (Grenoble), 58(4):1057-1091, 2008.

Arend Bayer. Polynomial bridgeland stability conditions and the large volume
limit. Geometry €& Topology, 13(4):2389-2425, 2009.

Oren Ben-Bassat, Christopher Brav, Vittoria Bussi, and Dominic Joyce. A
‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks,
with applications. Geom. Topol., 19(3):1287-1359, 2015.

Christopher Brav, Vittoria Bussi, Delphine Dupont, Dominic Joyce, and Balazs
Szendroi. Symmetries and stabilization for sheaves of vanishing cycles. arXiv
preprint arXiw:1211.3259, 2012.

Christopher Brav, Vittoria Bussi, and Dominic Joyce. A ‘Darboux theorem’ for

derived schemes with shifted symplectic structure. ArXiv e-prints, May 2013.

90



BIBLIOGRAPHY 91

[Beh09)]

[BF97]

[BLM™]

[BR16a)

[BR16D]

[CL11]

[DM16]

[Dré04]

[ER17]

[Hal14]

[Har77]

[HL]

Kai Behrend. Donaldson-Thomas type invariants via microlocal geometry. Ann.
of Math. (2), 170(3):1307-1338, 2009.

Kai Behrend and Barbara Fantechi. The intrinsic normal cone. Invent. Math.,
128(1):45-88, 1997.

Arend Bayer, Marti Lahoz, Emanuele Macri, Howard Nuer, Alexander Perry,
and Paolo Stellari. Stability conditions in families and families of hyperkahler

varieties.

Kai Behrend and Pooyah Ronagh. The Eigenvalue Spectrum of the Inertia
Operator. ArXiv e-prints, December 2016.

Kai Behrend and Pooyah Ronagh. The inertia operator on the motivic Hall
algebra. ArXiv e-prints, December 2016.

Huai-Liang Chang and Jun Li. Semi-perfect obstruction theory and Donaldson-
Thomas invariants of derived objects. Comm. Anal. Geom., 19(4):807-830,
2011.

Ben Davison and Sven Meinhardt. Cohomological Donaldson-Thomas theory
of a quiver with potential and quantum enveloping algebras. ArXiv e-prints,
January 2016.

Jean-Marc Drézet. Luna’s slice theorem and applications. In Jaroslaw A. Wis-
niewski, editor, Algebraic group actions and quotients, pages 39-90. Hindawi
Publishing Corporation, 2004.

Dan Edidin and David Rydh. Canonical reduction of stabilizers for Artin stacks
with good moduli spaces. ArXiv e-prints, October 2017.

Daniel Halpern-Leistner. On the structure of instability in moduli theory.

ArXiv e-prints, November 2014.

Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg,
1977. Graduate Texts in Mathematics, No. 52.

Daniel Halpern-Leistner. The D-Equivalence Conjecture for Moduli Spaces of

Sheaves.



BIBLIOGRAPHY 92

[HL10]

[HT10]

[m71]

[Joy15]

[JS12]

[Kir85]

[KL12]

[KL13a]

[KL13b)

[KLS17]

[KS10]

[Lie06]

Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of
sheaves. Cambridge Mathematical Library. Cambridge University Press, Cam-
bridge, second edition, 2010.

Daniel Huybrechts and Richard P. Thomas. Deformation-obstruction theory for
complexes via Atiyah and Kodaira-Spencer classes. Math. Ann., 346(3):545-
569, 2010.

Luc Tllusie. Compleze Cotangent et Deformations I. Lecture Notes in Mathe-

matics. Springer Berlin Heidelberg, 1971.

Dominic Joyce. A classical model for derived critical loci. J. Differential Geom.,
101(2):289-367, 2015.

Dominic Joyce and Yinan Song. A theory of generalized Donaldson-Thomas
invariants. Mem. Amer. Math. Soc., 217(1020):iv+199, 2012.

Frances Clare Kirwan. Partial desingularisations of quotients of nonsingular
varieties and their Betti numbers. Ann. of Math. (2), 122(1):41-85, 1985.

Young-Hoon Kiem and Jun Li. Categorification of Donaldson-Thomas invari-

ants via Perverse Sheaves. ArXiv e-prints, December 2012.

Young-Hoon Kiem and Jun Li. Localizing virtual cycles by cosections. J. Amer.
Math. Soc., 26(4):1025-1050, 2013.

Young-Hoon Kiem and Jun Li. A wall crossing formula of Donaldson-Thomas
invariants without Chern-Simons functional. Asian J. Math., 17(1):63-94, 2013.

Young-Hoon Kiem, Jun Li, and Michail Savvas. Generalized Donaldson-

Thomas Invariants via Kirwan Blowups. ArXiv e-prints, December 2017.

Maxim Kontsevich and Yan Soibelman. Motivic Donaldson-Thomas invariants:
summary of results. In Mirror symmetry and tropical geometry, volume 527 of
Contemp. Math., pages 55—89. Amer. Math. Soc., Providence, RI, 2010.

Max Lieblich. Moduli of complexes on a proper morphism. J. Algebraic Geom.,
15(1):175-206, 2006.



BIBLIOGRAPHY 93

[Loll]

[Lol3]

[LTO8]

[MFK94]

[MNOPO6]

[MT11]

[MT16]

[PTOY]

[PT14]

[PT15]

[PTVV13]

[Rei89)]

Jason Lo. Moduli of PT-semistable objects I. J. Algebra, 339:203-222, 2011.

Jason Lo. Moduli of PT-semistable objects II. Trans. Amer. Math. Soc.,
365(9):4539-4573, 2013.

Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants
of algebraic varieties. J. Amer. Math. Soc., 11(1):119-174, 1998.

David Mumford, James Fogarty, and Frances Kirwan. Geometric invariant
theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2)
[Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third
edition, 1994.

Davesh Maulik, Nikita Nekrasov, Andrei Okounkov, and Rahul Pandharipande.
Gromov-Witten theory and Donaldson-Thomas theory. I.  Compos. Math.,
142(5):1263-1285, 2006.

Davesh Maulik and David Treumann. Constructible functions and Lagrangian
cycles on orbifolds. arXiv preprint arXiv:1110.3866, 2011.

Davesh Maulik and Yukinobu Toda. Gopakumar-Vafa invariants via vanishing

cycles. ArXiv e-prints, October 2016.

Rahul Pandharipande and Richard P. Thomas. Curve counting via stable pairs
in the derived category. Invent. Math., 178(2):407-447, 2009.

Rahul Pandharipande and Richard P. Thomas. Almost closed 1-forms. Glasgow
Mathematical Journal, 56(1):169182, 2014.

Dulip Piyaratne and Yukinobu Toda. Moduli of Bridgeland semistable objects
on 3-folds and Donaldson-Thomas invariants. ArXiv e-prints, April 2015.

Tony Pantev, Bertrand Toén, Michel Vaquié, and Gabriele Vezzosi. Shifted
symplectic structures. Publications mathématiques de l’IHE‘S, 117(1):271-328,
2013.

Zinovy Reichstein. Stability and equivariant maps. Inventiones mathematicae,
96(2):349-383, Jun 1989.



BIBLIOGRAPHY

[Sav] Michail Savvas. To appear.

94

[Tho00] Richard P. Thomas. A holomorphic Casson invariant for Calabi-Yau 3-folds,

and bundles on K3 fibrations. J. Differential Geom., 54(2):367-438, 2000.



	Abstract
	Acknowledgements
	Introduction
	Classical Donaldson-Thomas theory
	Main results
	Statement of results and outline of approach
	Comparison with other works and further directions

	Overview of the thesis
	Notation and conventions

	Kirwan Partial Desingularization
	Geometric Invariant Theory (GIT)
	The local case
	The global case

	Kirwan's partial desingularization procedure for smooth GIT quotients
	Kirwan's blowup algorithm
	Kirwan blowup by slices

	Kirwan partial desingularization of singular GIT quotients
	Intrinsic and Kirwan blowups
	Kirwan partial desingularization for quotient stacks

	The relative case
	Stacks with good moduli spaces
	Kirwan partial desingularization for stacks with good moduli spaces

	Semi-perfect Obstruction Theory
	Perfect obstruction theory
	Symmetric obstruction theory
	Semi-perfect obstruction theory

	Local Calculations
	Local models and standard forms
	The absolute case
	Blowup bundle and section
	The relative case
	Obstruction theory of local model

	-equivalence
	-compatibility

	(-1)-shifted Symplectic Stacks and their Truncations
	D-critical loci
	D-critical schemes
	Equivariant d-critical loci

	(-1)-shifted symplectic stacks
	Derived algebraic geometry: introduction and local model
	(-1)-shifted symplectic structures
	Comparison of local presentations


	Generalized Donaldson-Thomas Invariants
	The case of sheaves
	Obstruction theory of Kirwan partial desingularization of equivariant d-critical loci
	Definition of the DTK invariant

	Deformation invariance
	Obstruction theory in the relative case
	Deformation invariance of DTK invariants

	The case of perfect complexes
	Stability conditions
	-reductive stacks
	Moduli stacks of semistable complexes are of DT type
	Rigidification of C-automorphisms of objects
	Definition of the DTK invariant
	The relative case


	Bibliography

