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Abstract

In this thesis, we develop a virtual cycle approach towards generalized Donaldson-

Thomas theory of Calabi-Yau threefolds. Let σ be a stability condition on the bounded

derived category Db(CohW ) of a Calabi-Yau threefold W and M a moduli stack of σ-

semistable objects of fixed topological type.

We construct an associated Deligne-Mumford stack M̃, called the Kirwan partial desin-

gularization of M, with an induced semi-perfect obstruction theory of virtual dimension

zero, and define the generalized Donaldson-Thomas invariant via Kirwan blowups to be the

degree of the virtual cycle [M̃]vir. Examples of applications include Gieseker stability of

coherent sheaves and Bridgeland and polynomial stability of perfect complexes.

When M is a moduli stack of Gieseker semistable sheaves, this is invariant under de-

formations of the complex structure of W . More generally, deformation invariance is true

under appropriate properness assumptions which are expected to hold in all cases.
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Chapter 1

Introduction

1.1 Classical Donaldson-Thomas theory

We begin by giving a brief account of classical Donaldson-Thomas (DT) theory and

its main features. Let W be a smooth, projective Calabi-Yau threefold (CY3) over C, i.e.

KW ' OW and dimCW = 3.

Counting subvarieties of a given type inside an algebraic variety has been one of the

important themes in algebraic geometry. For example, a smooth cubic surface contains 27

lines [Har77].

Significant advances in string theory in the 1990’s motivated the development of several

mathematical theories of enumerating curves in CY3’s, most notably Gromov-Witten and

DT invariants. These conjecturally capture the same information [MNOP06] and are also

related to other enumerative theories, such as Stable Pair [PT09], BPS and Gopakumar-Vafa

invariants [KL12, MT16].

DT theory is a sheaf theoretic technique of enumerating curves in W . DT invariants were

first introduced by Thomas in his thesis [Tho00]. The necessary technical tool to achieve this

was provided by the theory of virtual fundamental cycles and perfect obstruction theories,

developed by Li-Tian [LT98] and Behrend-Fantechi [BF97]. One obtains the associated

numerical invariant by integrating against a cycle in the moduli space parametrizing the

geometric objects of interest, e.g. curves or bundles of given topological data.

More precisely, for γ ∈ H∗(W,Q), let Mss(γ) be the moduli stack parametrizing

Gieseker semistable sheaves on W of fixed Chern character γ. We consider the following

situation.

1



CHAPTER 1. INTRODUCTION 2

Assumption 1.1.1. Every semistable sheaf in Mss(γ) is stable, i.e. Mss(γ) =Ms(γ).

We then have the following theorem.

Theorem 1.1.2. [Tho00, HT10] Let Mss(γ) = Ms(γ) be as above such that Assump-

tion 1.1.1 holds and denote by M s(γ) its coarse moduli space. Then M s(γ) admits a per-

fect obstruction theory of virtual dimension zero and hence a virtual cycle [M s(γ)]vir ∈
A0(M s(γ)). The classical Donaldson-Thomas invariant is defined as

DT(Ms(γ)) := deg[M s(γ)]vir.

It is invariant under deformation of the complex structure of W .

Example 1.1.3. Let Iβ,n be the Hilbert scheme parametrizing subschemes C ⊂ W such

that [C] = β ∈ H2(W,Z) and χ(OC) = n. Then every ideal sheaf is stable and hence we

have an associated DT invariant. This is a “virtual” count of curves in W of topological

type (β, n).

The perfect obstruction theory is induced by the universal ideal sheaf I. Let π : W ×
Iβ,n → Iβ,n be the projection morphism. The two-term perfect complex Rπ∗RHom(I, I)0[2]

gives a perfect obstruction theory on Iβ,n. Here the subscript 0 denotes the traceless part of

RHom(I, I).

In general,Mss(γ) = [Qss/G] is a global quotient stack obtained by Geometric Invariant

Theory (GIT) [HL10, MFK94]. Q is an appropriate Quot scheme, hence projective, and

G = GL(n,C) (for n large) is acting linearly on Q. We have then the following diagram

Ms(γ) = [Qs/G] //

��

[Qss/G] =Mss(γ)

��
M s(γ) //M ss(γ)

,

where the horizontal arrows are open embeddings and moreover M ss(γ) is projective. Every

stable sheaf E is simple, i.e. End(E) = {C · id} given by scaling, and therefore Ms(γ) →
M s(γ) is a coarse moduli space and a C×-gerbe. Since the center Z(G) = C× acts trivially on

Q and this coincides with the scaling action on each sheaf, we may ignore scaling by replacing

G with PGL(n,C), which we do from now on. Then by abuse of notation Ms(γ) ∼= M s(γ)

and stable sheaves have trivial automorphism groups.
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Assumption 1.1.1 is important in multiple ways. If Ms(γ) =Mss(γ) then the sheaves

in question have trivial automorphisms and in particularMss(γ) is a scheme or more gener-

ally a Deligne-Mumford stack, whereas in general it is only an Artin stack, since semistable

sheaves can have positive dimensional automorphism groups (even after quotienting out

scaling automorphisms). For example, if E is stable and F = E ⊕ E is semistable, then

Aut(F ) = GL(2,C). Mss(γ) is also proper, as M ss(γ) is projective. One is then able to

apply the machinery of perfect obstruction theory [BF97, LT98], which requires a DM stack

in order to produce a virtual cycle and properness so that one may take the degree thereof.

In fact, even more is true. In [Beh09], Behrend defined a canonical constructible function

νM : M → Z for any stack M. νM is a measure of the singularity of M. For example,

if M is a smooth DM stack, then νM ≡ (−1)dimM. Behrend further defined the notion

of a symmetric obstruction theory and observed that the perfect obstruction theory of

Theorem 1.1.2 is symmetric. We have the following remarkable theorem.

Theorem 1.1.4. [Beh09, MT11] Let M be a proper Deligne-Mumford stack with a sym-

metric obstruction theory. Then

deg[M]vir = χ(M, νM) :=
∑
n∈Z

nχ(ν−1
M (n)) ∈ Z. (†)

Example 1.1.5. Suppose M := M s(γ) is as in Theorem 1.1.2. Then its perfect obstruction

theory is symmetric and thus

DT(Ms(γ)) = deg[M ]vir = χ(M,νM ).

1. This equality has the striking implications that the classical DT invariant is motivic,

in the sense that it is a weighted Euler characteristic, and moreover it only depends

on the scheme structure of M and not its obstruction theory, since the function νM

depends only on M itself.

2. If M is smooth, then (†) reduces to the Gauss-Bonnet theorem

ctop(ΩM ) = deg[M ]vir = χ(M,νM ) = (−1)dimMχ(M).
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1.2 Main results

1.2.1 Statement of results and outline of approach

The main objective of this thesis is to give a definition of a generalized DT invariant,

by which we mean a direct generalization of Theorem 1.1.2 when Assumption 1.1.1 fails,

thereby obtaining a virtual count of semistable sheaves even when there exist ones which

are semistable but not stable.

The first main result that we show is as follows.

Theorem 1.2.1. [KLS17, Kiem, Li, S.] Let M =Mss(γ) be the moduli stack of Gieseker

semistable sheaves on W of Chern character γ, where the C×-scaling automorphisms have

been rigidified. Then there exist:

1. A proper DM stack M̃ with a morphism M̃ →M, which gives an isomorphism over

the stable locus Ms. M̃ is called the Kirwan partial desingularization of M.

2. A semi-perfect obstruction theory of virtual dimension zero on M̃, which extends

the symmetric obstruction theory of the stable locus Ms, and thus a virtual cycle

[M̃]vir ∈ A0(M̃).

We define the generalized Donaldson-Thomas invariant via Kirwan blowups (also called the

DTK invariant) as

DTK(M) := deg[M̃]vir.

DTK(M) is invariant under deformations of the complex structure of W .

Remark 1.2.2. When Mss(γ) = Ms(γ), i.e Assumption 1.1.1 holds, then M̃ = M and

the semi-perfect obstruction theory of M̃ is the symmetric obstruction theory of M. So the

DTK invariant is indeed a generalized DT invariant.

As remarked in the preceding section, the main issue arising in the absence of Assump-

tion 1.1.1 is that M is in general an Artin stack. Therefore, Theorem 1.2.1 says that we

may replace M with a canonical DM stack and work there instead, preserving all the data

on the stable locus Ms.

We now briefly outline the construction. M = Mss(γ) has the following important

properties:



CHAPTER 1. INTRODUCTION 5

1. M is a global quotient stack obtained by GIT. Therefore, we may write M = [X/G]

with a sequence of closed embeddings X ⊂ P ⊂ (PN )ss, where P is smooth and

G = PGL(n,C) acts linearly on PN .

2. M is the truncation of a (−1)-shifted symplectic derived Artin stack [PTVV13] and

in particular a d-critical Artin stack [BBBBJ15, Joy15].

To construct the Kirwan partial desingularization M̃, we adapt Kirwan’s partial desin-

gularization procedure. In [Kir85], Kirwan described a canonical blowup procedure to

produce a partial desingularization P̃ → P , yielding a proper DM stack [P̃ /G] obtained by

GIT and an isomorphism over the stable locus [P s/G].

By generalizing and adapting appropriately the notion of intrinsic blowup, introduced

in [KL13b], we define a closed G-invariant subscheme X̃ ⊂ P̃ ×P X, which is independent

of all choices involved and hence canonical. We then define M̃ = [X̃/G].

To obtain the obstruction theory on M̃, we use the d-critical structure of M. M is

d-critical and hence X is a G-invariant d-critical locus. Then for every x ∈ X such that G ·x
is closed in X and H is the stabilizer of x in G (hence reductive), we have G-invariant affine

Zariski open x ∈ U ⊂ X,x ∈ V ⊂ P and locally closed affine subschemes T ⊂ U, S ⊂ V

granted by Luna’s étale slice theorem such that we have a diagram

[T/H]

��

// [U/G]

��
[S/H] // [V/G]

(1.1)

with étale horizontal arrows and T = (df = 0) ⊆ S for f : S → A1 an H-invariant regular

function on S.

Thus we have the following H-equivariant 4-term complex

h = Lie(H) −→ TS |T
d(df)∨−−−−→ FS |T = ΩS |T −→ h∨. (1.2)

For x ∈ T with finite stabilizer, this is quasi-isomorphic to a 2-term complex which provides

a perfect obstruction theory of [T/H] and thus of [U/G] near x.

In general, let x̃ ∈ X̃ be lying over x ∈ X with stabilizer R. Then we can lift (1.2)

canonically and find an étale neighborhood [T̃ /R] → [S̃/R] → [P̃ /G] of x̃ ∈ P̃ , a vector
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bundle F
S̃

over S̃ with an invariant section ω
S̃
∈ H0(S̃, F

S̃
) such that T̃ = (ω

S̃
= 0) ⊂ S̃,

and a divisor D
S̃

, all R-equivariant, such that (1.2) lifts canonically to a sequence

r = Lie(R) −→ T
S̃
|
T̃
−→ F

S̃
|
T̃
−→ r∨(−D

S̃
) (1.3)

whose first arrow is injective and last arrow is surjective. Therefore, (1.3) is quasi-isomorphic

to a 2-term complex

(dω∨
S̃

)∨ : T
[S̃/R]
|
T̃
−→ F red

S̃
|
T̃
, (1.4)

where F red
S̃

is the kernel of the last arrow in (1.3). Quotienting by R, we get

(d(ωred
S̃

)∨)∨ : T
[S̃/R]
|
[T̃ /R]

−→ F red
[S̃/R]
|
[T̃ /R]

. (1.5)

We show that the collection of the cokernels coker(d(ωred
S̃

)∨)∨ patch to a coherent sheaf

ObM̃ of OM̃-modules, and that the symmetric obstruction theories of the various T de-

fined by (df = 0) induce a semi-perfect obstruction theory [CL11] on M̃ = [X̃/G], with

obstruction sheaf ObM̃.

The relative version of the above construction can be constructed along parallel lines,

using the machinery of derived symplectic geometry. This implies the deformation invari-

ance of the DTK invariant.

We may further generalize Theorem 1.1.2 and Theorem 1.2.1 to the case of semistable

perfect complexes on W . The second main result that we show is the following.

Theorem 1.2.3. [Sav, S.] Let M =Mσ−ss(γ) be a moduli stack of semistable perfect com-

plexes in Db(CohW ), where σ is an appropriate stability condition (cf. Definition 6.3.7),

γ ∈ H∗(W,Q) and C×-scaling automorphisms of complexes have been rigidified.

Then there exists a Kirwan partial desingularization M̃ → M, which is a proper DM

stack and isomorphic to M over the stable locus Ms. M̃ admits a semi-perfect obstruction

theory of virtual dimension zero, extending the symmetric obstruction theory of Ms, and

thus a virtual cycle [M̃]vir ∈ A0(M̃).

We therefore may define the generalized Donaldson-Thomas invariant via Kirwan blowups

as

DTK(M) := deg[M̃]vir.
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Examples ofMσ−ss(γ) where the Theorem applies include Bridgeland stability, as con-

sidered in [PT15], and polynomial stability, as considered in [Bay09, Lo11, Lo13].

The main difference with the case of sheaves is that, while still the truncation of a (−1)-

shifted symplectic derived Artin stack, M is no longer a global quotient stack obtained by

GIT. However, it has a similar structure as one can show that it has a good moduli space

[Alp13, AHLH]. With a bit more care and using a Luna étale slice theorem for stacks with

good moduli spaces [AHR15], we show that all the arguments for the construction of M̃
and its obstruction theory go through in this case as well.

Finally, we remark that even though the deformation invariance property is not stated

in Theorem 1.2.3, it is true in all applications using upcoming work [BLM+] regarding

stability conditions in families and a relative Luna étale slice theorem, which also holds by

upcoming work in [AHR].

1.2.2 Comparison with other works and further directions

Our construction of the DTK invariant fits naturally in the context of obtaining gener-

alizations of Donaldson-Thomas invariants.

At the level of numbers, Joyce-Song [JS12] have also constructed generalized DT invari-

ants. Their approach is motivic in nature, using Hall algebras and Behrend’s constructible

function. In that sense, they are directly generalizing the right hand side of (†), whereas

we are generalizing the left hand side. We do expect that the DTK invariant is related to

the Joyce-Song invariant via a universal formula which will provide a natural generalization

of Theorem 1.1.4 and also a wall-crossing formula for the DTK invariant. These will be

investigated in future work.

Kontsevich-Soibelman have also developed a generalized DT theory with an associated

wall-crossing formula in [KS10]. We also refer the reader to the recent work of Behrend-

Ronagh in [BR16a, BR16b].

Beyond numbers, one might also desire a more categorical invariant. Categorifications of

DT theory have been developed in [BBD+12, KL12], where the DT invariant is expressed

as the Euler characteristic of a perverse sheaf on the moduli space. Davison-Meinhardt

[DM16] have also made great progress in categorifying the Joyce-Song DT invariants. We

expect that the methods in this thesis can be adapted to develop a theory of a K-theoretic



CHAPTER 1. INTRODUCTION 8

DTK invariant, which will also be the subject of further work.

Regarding the Kirwan partial desingularization M̃, Edidin-Rydh have also developed

a desingularization procedure for stacks with good moduli spaces in [ER17]. For smooth

stacks, our desingularization is the same as theirs. For singular stacks, our Kirwan blowups

can be phrased in their language of saturated blowups, however the desingularization they

obtain is a closed substack of ours. There might be a derived algebraic geometric reason

behind this, which seems worth thinking about. Finally, a very interesting question is

whether M̃ admits a moduli interpretation. This seems especially challenging, but, if

successfully carried out, we believe that it will significantly deepen our understanding and

thus hope that it will eventually be answered.

1.3 Overview of the thesis

In Chapter 1, we give an introduction to classical DT theory, followed by a statement of

the main results of the thesis and a sketch of their proof. We then put the work in context

compared to other works and exhibit possible future directions. We finally fix notation and

conventions that are followed throughout.

In Chapter 2, we give some background on GIT and Kirwan’s partial desingularization

procedure. We then proceed to define Kirwan blowups and construct a Kirwan partial

desingularization for singular quotient stacks obtained by GIT. After some background on

stacks with good moduli spaces and their properties, we generalize the construction to those

as well. The material in Sections 2.3, 2.4 and 2.6 is original, of which 2.3 is based on joint

work with Young-Hoon Kiem and Jun Li.

Chapter 3 contains necessary material on perfect obstruction theory, including symmet-

ric obstruction theory, and semi-perfect obstruction theory.

Chapter 4 contains original material consisting of local calculations, which form the nec-

essary formalism and backbone of the construction of the obstruction theory of the Kirwan

partial desingularization in our theorems. Part of the material in Subsections 4.1.1 and

4.1.2 is based on joint work with Young-Hoon Kiem and Jun Li.
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In Chapter 5, we collect background material on d-critical loci and derived symplectic

geometry. In turn, this is used in conjunction with the results of Chapter 4 and gives a

sufficiently flexible framework in the relative case as well.

Finally, in Chapter 6, we define DTK invariants for sheaves and complexes and prove

their deformation invariance in the former case. Most of the material is original, unless

attributed to other authors.

1.4 Notation and conventions

The following tables summarize notation and abbreviations that are commonly used

throughout the thesis.

Table 1.1: Summary of notation

Notation Explanation

W Smooth, projective Calabi-Yau threefold

C Smooth, quasi-projective scheme, commonly a curve

L≥−1
U/C Truncated cotangent complex of U → C

γ Element of H∗(W,Q)

M Artin stack

Mss(γ) Stack of Gieseker semistable sheaves on W of Chern character γ

σ Stability condition on Db(CohW )

Mσ−ss(γ) Stack of σ-semistable objects in a heart A ⊂ Db(CohW )

G,H,R Complex reductive groups, usually with H ≤ G or R ≤ G

g, h, r Lie algebras of G,H,R respectively

X,P G-equivariant schemes, P smooth, projective, X ⊂ P closed subscheme

V,U G-equivariant schemes, V smooth, U ⊂ V closed subscheme
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Notation Explanation

G · x,Gx Orbit and stabilizer of a closed point x ∈ X in a G-scheme X

ZR, X
R Fixed locus of R-action on X

S, T R-/H-equivariant schemes, S smooth, T ⊂ S closed subscheme, usually

occuring as étale slices at a closed orbit of a pair V,U

U intr, V intr etc. Intrinsic blowups with respect to a group action

X//G GIT quotient of a G-scheme X with linearized action

Û , V̂ , X̂, P̂ etc. Kirwan blowups with respect to a group action

Ũ , X̃,M̃ etc. Kirwan partial desingularizations of schemes or stacks

FV Equivariant vector bundle on a G-scheme V

ωV Element of H0(V, FV )G

(A•, δ) Commutative differential negatively graded algebra over a ring S

Spec(A•) Derived affine scheme

UUU,TTT ,MMM etc. Derived schemes or Artin stacks

LA• ,LSpecA• ,LM Derived cotangent complexes

Table 1.2: Summary of abbreviations

Abbreviation Explanation

CY3 Calabi-Yau threefold

DT Donaldson-Thomas

DTK Donaldson-Thomas invariant via Kirwan blowups

DM Deligne-Mumford

GIT Geometric Invariant Theory
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Additionally:

• Throughout, we work over the field of complex numbers C.

• Unless otherwise stated, we consider connected reductive groups for simplicity of

exposition.

• For a morphism ρ : U → V and a sheaf E on V , we often use E|U to denote ρ∗E.

Typically ρ will be a locally closed embedding or unramified.



Chapter 2

Kirwan Partial Desingularization

2.1 Geometric Invariant Theory (GIT)

In this section, we give some brief background on GIT by stating the basic definitions

and results we will need. A good reference for the subject is [MFK94].

2.1.1 The local case

Let X = SpecA be an affine scheme of finite type over C with an action by a reductive

group G. We have the following theorem due to Nagata.

Theorem 2.1.1. The ring AG of invariant elements of A under the action of G is finitely

generated over C.

This lets us define the GIT quotient of X as follows.

Definition 2.1.2. The GIT quotient of X is the affine scheme X//G := SpecAG. The

natural morphism X → X//G is a good categorical quotient.

One important feature of this setup is the existence of the Reynolds operator.

Theorem 2.1.3. There exists an AG-linear map R : A→ AG, which restricts to the identity

on AG. R is called the Reynolds operator.

More generally, there exists a Reynolds operator M → MG for any finitely generated

G-equivariant A-module M .

12
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Remark 2.1.4. One may think of the Reynolds operator as an averaging operator. If G

is the complexification of a compact Lie group K and µ is a bi-invariant Haar measure on

K then R is the operation of averaging over the action of K with respect to µ. Since K is

Zariski dense in G, the result is also G-invariant.

We may take an étale slice for the action around a closed point with closed orbit, granted

by the following theorem.

Theorem 2.1.5. (Luna’s étale slice theorem) [Dré04, Theorem 5.3] Let x ∈ X be a closed

point with closed orbit G · x and (thus reductive) stabilizer H = Gx. There exists a locally

closed H-invariant affine subscheme T ⊂ X containing x such that group multiplication

T ×G→ X induces an étale morphism T ×H G→ X. Here T ×H G = (T ×G)/H, where

H acts freely on T × G by (t, g)h = (th, h−1g). Moreover, T ×H G → X is strongly étale,

meaning that the diagram

T ×H G //

��

X

��
T//H // X//G

is cartesian and the lower horizontal arrow is étale.

If X is normal or smooth, then T may be taken to be normal or smooth respectively.

2.1.2 The global case

Let X be a projective scheme over C with an ample line bundle L and an embedding

i : X → PN = P
(
H0
(
X,L⊗r

))
such that L⊗r = i∗OPN (1) for some sufficiently large r. Suppose that X admits an action

by a reductive group G.

Definition 2.1.6. We say that the G-action on X is linearized with respect to L or that L

is G-linearized if the action of G on X lifts to an action on L. More precisely, if we denote

the group action by σ : X ×G → X, π1 : X ×G → X the projection to the first factor and

π12 : X × G × G → X × G the projection to the first two factors, a G-linearization is an

isomorphism

Φ: σ∗L −→ π∗1L
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satisfying the cocycle condition

(idX × µ)∗Φ = π∗12Φ ◦ (σ × idG)∗Φ

where µ : G×G→ G is group multiplication.

Once we have a linearization of the G-action on X, we can define the notions of stability

and semistability.

Definition 2.1.7. Let x ∈ X. We say that x is:

1. semistable, if there exists a d ∈ N+ and an invariant section s ∈ H0(X,L⊗d)G such

that s(x) 6= 0.

2. stable, if it is semistable and moreover the orbit G · x of x is closed in the set of

semistable points of X and the stabilizer Gx of x is finite.

3. unstable, if it is not semistable.

We denote the loci of semistable and stable points of X by Xss(L) and Xs(L) respectively.

If the choice of L is clear from context, we will omit it from the notation and merely write

Xss, Xs instead.

Remark 2.1.8. It is clear from the above definition that Xs(L) ⊂ Xss(L) ⊂ X. Also, both

inclusions are open embeddings.

The main theorem of GIT is as follows.

Theorem 2.1.9. Let X be a projective scheme with a G-linearized ample line bundle L.

We define the GIT quotient of X as

Xss//G := Proj

⊕
d≥0

H0
(
Y, L⊗d

)G .

Xss//G is projective. There is a natural quotient map Xss → Xss//G which is a good

categorical quotient. Moreover, there is an open subscheme Xs/G ⊂ Xss//G such that

π−1(Xs/G) = Xs and the induced morphism Xs → Xs/G is a good geometric quotient.
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2.2 Kirwan’s partial desingularization procedure for smooth

GIT quotients

In this section, we briefly recall Kirwan’s desingularization procedure for smooth GIT

quotients. We work with the following situation: Let G be a reductive group; G acts on a

PN via G→ GLN+1, and

X ⊂ P ⊂ (PN )ss (2.1)

are G-invariant closed subschemes where P is smooth. We also assume P s 6= ∅.

2.2.1 Kirwan’s blowup algorithm

We review Kirwan’s partial desingularization P̃ of P , as developed in [Kir85].

As the stabilizer groups of points in P s are all finite, P s//G = P s/G can have at worst

finite quotient singularities. In stack language, this means that the quotient stack [P s/G]

is a DM stack. When P s 6= P , the GIT quotient P//G will have worse than finite quotient

singularities, and the quotient stack is not DM. In [Kir85], Kirwan produced a canonical

procedure to blow up P in order to produce a DM stack out of the Artin stack [P/G].

If the orbit of an x ∈ P is closed in P , then the stabilizer Gx of x is a reductive subgroup

of G. Let us fix a representative of each conjugacy class of subgroups R of G that appear

as the identity component of the stabilizer Gx of an x ∈ P with G ·x closed in P . Let R(P )

denote the set of such representatives. By [Kir85], R(P ) is finite and R(P ) = {1} if and

only if P = P s.

Let R ∈ R(P ) be an element of maximal dimension and let ZR be the fixed locus by

the action of R, which is smooth. Then GZR = G ×NR ZR is smooth in P , where NR is

the normalizer of R in G.

We let π : blR(P ) → P be the blowup of P along GZR = G ×NR ZR. Then L =

π∗OP (1)(−εE) is ample for ε > 0 sufficiently small, where E denotes the exceptional divisor

of π. The action of G on P induces a linear action of G on blR(P ) with respect to L. We

have the following theorem due to Reichstein.

Theorem 2.2.1. [Rei89] Let Z = GZR ⊂ P as above and denote q : P → P//G. The

unstable locus of blR(P ) is the strict transform of the saturation q−1(q(Z)) of Z.
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Therefore, the semistable points in the closure of blR(P ) inside the projective space

given by the embedding induced by the ample line bundle L all lie in blR(P ). The unstable

points in blR(P ) are precisely those points whose orbit closure meets the unstable points in

E = PNGZR/P , and the unstable points of blR(P ) lying in the fiber E|x = PNGZR/P |x for

x ∈ ZR are precisely the unstable points of the projective space PNGZR/P |x with respect to

the linear action of R. We define

P̂ = (blR(P ))ss.

By [Kir85], R(P̂ ) = R(P )− {R}.

Definition 2.2.2. The scheme P̂ (resp. P̂ //G) is called the Kirwan blowup of P (resp.

P//G) with respect to the group R.

Repeating the Kirwan blowup finitely many times, once for each element of R(P ) in

order of decreasing dimension, we end up with a G-equivariant morphism

P̃ −→ P

which induces a projective morphism

P̃ /G −→ P//G.

As P̃ is smooth, P̃ /G has at worst finite quotient singularities.

Definition 2.2.3. The scheme P̃ (resp. P̃ /G) is called the Kirwan partial desingularization

of P (resp. P//G).

2.2.2 Kirwan blowup by slices

We show here how to perform Kirwan’s algorithm by taking slices of closed points in P

with closed G-orbit.

We remark that we can assume that the maximal dimension of elements in R(P ) is

equal to the maximal dimension of elements of R(X). Otherwise letting R ∈ R(P ) be an

element of maximal dimension, the locus GZR ⊂ P is disjoint from X. Thus we can replace

P by P̂ and have X ⊂ P̂ ⊂ (PN ′)ss, for a different N ′, while having R(P̂ ) = R(P )− {R}.
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Let R ∈ R(X) be an element of maximal dimension. (By assumption, it is also an

element in R(P ) of maximal dimension.) Let x ∈ X be such that G · x is closed in X and

the identity component of the stabilizer Gx is R. By Luna’s étale slice theorem (cf. Theo-

rem 2.1.5), there is a locally closed R-invariant smooth affine subvariety S′ of P containing

x such that the G-equivariant map

G×R S′ −→ P, (g, s) 7→ gs,

is étale onto an open subset of P and the associated morphism of quotient stacks

[G×R S′/G] = [S′/R] −→ [P/G]

is étale.

We blow up S′ along the fixed locus S′R (of the action of R). Let Ŝ′ denote the semistable

part in the blowup. (Thus Ŝ′ is the Kirwan blowup of S′ associated with R.) Then we have

an étale morphism

[Ŝ′/R] −→ [P̂ /G]. (2.2)

Similarly, S = X ×P S′ is an étale slice of X at x, and Ŝ = Ŝ′ ×
P̂
X̂ is the Kirwan blowup

of S associated with R, and

[Ŝ/R] −→ [X̂/G] (2.3)

is étale.

In conclusion, the collection of (2.2) (resp. of (2.3)) together with P −GZR (resp. with

X −GZR) form an étale covering of P̂ (resp. of X̂).

Remark 2.2.4. At this point we remark that we can follow the procedure outlined in the

previous section more closely by taking a Gx-invariant slice S′′ at x and then blowing it up

along GxS
′′R. Then we would obtain a more refined version of (2.2) as a sequence of étale

morphisms

[Ŝ′′/R] −→ [Ŝ′′/Gx] −→ [P̂ /G]

Moreover, the second arrow also induces an étale morphism at the level of GIT quotients

Ŝ′′//Gx −→ P̂ //G
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by the properties of an étale slice (cf. [Dré04, Theorem 5.3]).

2.3 Kirwan partial desingularization of singular GIT quo-

tients

In this section we generalize the results of the previous section to possibly singular GIT

quotients, by adapting the intrinsic blowups introduced in [KL13b].

2.3.1 Intrinsic and Kirwan blowups

Suppose that U is a scheme with an action of a reductive group G. Let us assume that

G is connected, as this will be the case when we take blowups throughout.

Suppose that we have an equivariant embedding U → V into a smooth G-scheme V

and let I be the ideal defining U . Since U ⊂ V is G-equivariant, G acts on I and we

have a decomposition I = Ifix ⊕ Imv into the fixed part of I and its complement as G-

representations.

Let V G be the fixed point locus of G inside V and π : blG(V ) → V the blowup of V

along V G. Let E ⊂ blG(V ) be its exceptional divisor and ξ ∈ Γ(OblG(V )(E)) the tautological

defining equation of E. We claim that

π−1(Imv) ⊂ ξ · OblG(V )(−E) ⊂ OblG(V ). (2.4)

Let R : I → Ifix be the Reynolds operator. Then for any ζ ∈ Imv, R(ζ) = 0. Let x ∈ V G

be any closed point. Since Ox is fixed by G, we have ζ|x = R(ζ)|x = 0. This proves that

all elements in Imv vanish along V G, hence (2.4).

Consequently, ξ−1π−1(Imv) ⊂ OblG(V )(−E) ⊂ OblG(V ). We define Iintr ⊂ OblG(V ) to be

Iintr = ideal generated by π−1(Ifix) and ξ−1π−1(Imv). (2.5)

Definition 2.3.1. (Intrinsic blowup) The G-intrinsic blowup of U is the subscheme U intr ⊂
blG(V ) defined by the ideal Iintr.

Lemma 2.3.2. The G-intrinsic blowup of U is independent of the choice of G-equivariant

embedding U ⊂ V , and hence is canonical.
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Proof sketch. The proof is identical to [KL13b, Section 3.1]. We give a very brief account

of the main steps involved.

One firstly establishes the claim in the case of U being a formal affine scheme such that

the fixed locus UG is an affine scheme which has the same support as U does.

For an affine scheme U with a G-action, one can then take the formal completion U c of

U along UG and check that the G-intrinsic blowup of U c glues naturally with U − UG to

yield the G-intrinsic blowup of U .

Finally, one can show by taking a cover by (Zariski or étale) open affine schemes that

the intrinsic blowup is well-defined for a general scheme or DM stack with a (representable)

action of G.

Remark 2.3.3. The following remarks on the proof of Lemma 2.3.2 are in order:

1. If U is smooth, then the G-intrinsic blowup coincides with the blowup of U along UG.

2. Since the core of the proof relies on working first in the formal completion of V G

inside V and proving the Lemma 2.3.2 in the case of formal schemes, this enables us

to perform local calculations formally (or analytically) locally.

Suppose U is an affine G-scheme, then we can think of all points of U as being semistable

as in the local case for GIT in Subsection 2.1.1. We can also make sense of semistable points

in U intr without ambiguity.

In the Kirwan blowup, we can detect which points on the exceptional divisors that occur

are unstable just by looking at the action of R on PNGZR/P . Furthermore, a point off the

exceptional divisor is unstable if the closure of its orbit meets the unstable locus of the

exceptional divisor. Here we are using again Theorem 2.2.1. Thus for any smooth affine

G-scheme V , we can define its Kirwan blowup V̂ associated to any R ∈ R(V ) of maximal

dimension.

It is not hard to see that if we have an equivariant embedding V →W between smooth

schemes, then (W intr)ss ∩ V intr = (V intr)ss based on our description. Hence, in the above

situation where we consider R = G, we may define (U intr)ss := U intr ∩ (V intr)ss for any

equivariant embedding U → V into a smooth scheme V . This is independent of the choice

of U → V .

Definition 2.3.4. (Kirwan blowup) We define the Kirwan blowup of a possibly singular

affine G-scheme U associated with G to be Û = (U intr)ss.
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Example 2.3.5. We give a few examples of Kirwan blowups when U is affine and G = C×.

1. Suppose that U has a trivial G-action. Then UG = U and it is easy to check that

Û = ∅.

2. Let V = C2
x,y, where G acts on x with weight 1 and on y with weight −1. Then

V intr = blV GV and V̂ is obtained by deleting the two punctured axes (x = 0, y 6= 0)

and (x 6= 0, y = 0) as well as the points 0,∞ on the exceptional divisor E = P1.

3. Let V = C2
x,y be as before and U = (x2y = 0, xy2 = 0) ⊂ V . Then Û ⊂ V̂ is given

by the vanishing of ξ2, where ξ is the local equation defining the exceptional divisor of

V intr.

Remark 2.3.6. Suppose that U → V is a G-equivariant embedding into a smooth G-scheme

V . Let, as before, I be the ideal of U in V .

We now explain how one can proceed if G is not connected. Let G0 be the connected

component of the identity. This is a normal, connected subgroup of G of finite index. Let

I = Ifix ⊕ Imv be the decomposition of I into fixed and moving parts with respect to the

action of G0. Using the normality of G0, we see that the fixed locus V G0 is a closed, smooth

G-invariant subscheme of V and also Ifix, Imv are G-invariant.

Let π : blV G0V → V be the blowup of V along V G0 with exceptional divisor E and

local defining equation ξ. Then we take Iintr to be the ideal generated by π−1(Ifix) and

ξ−1π−1(Imv). Everything is G-equivariant and we define the U intr as the subscheme of

blV G0V defined by the ideal Iintr.

Finally, we need to delete unstable points. By the Hilbert-Mumford criterion (cf. [MFK94,

Theorem 2.1]) it follows that semistability on E with respect to the action of G is the same

as semistability with respect to the action of G0, since every 1-parameter subgroup of G

factors through G0, and hence we may delete unstable points exactly as before, using the

discussion in Subsection 2.2.1, and define the Kirwan blowup Û .

One may check in a straightforwardly analogous way that this has the same properties

(and intrinsic nature). It is obvious that if G is connected we obtain Definition 2.3.4.

2.3.2 Kirwan partial desingularization for quotient stacks

We continue working with the G-triple X ⊂ P ⊂ (PN )ss as in (2.1). We list

R(P ss) = {R1, . . . , Rm, {1}}
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in order of decreasing dimension.

We begin with R = R1 ∈ R(P ss). For any x ∈ ZR ⊂ P , let S be an étale affine slice for

x in P and let T = S ×P X. (In case x 6∈ X, we can choose S so that T = ∅.)
As S is smooth, affine and R-invariant, we let Ŝ be the Kirwan blowup of S associated

with R. As T ⊂ S is closed and R-invariant, we let T̂ ⊂ Ŝ be the Kirwan blowup of T

associated with R. They fit into a commutative diagram

G×R T̂ //

��

G×R Ŝ //

��

P̂

��
G×R T //

��

G×R S // P

X

44

(2.6)

This collection of étale maps G ×R S → P cover the locus GZR inside P . Let E ⊂ P̂ be

the exceptional divisor of P̂ → P . Because P −GZR = P̂ −E, P −GZR can be viewed as

an open subscheme of P̂ . Consequently, the collection of étale maps G×R Ŝ → P̂ together

with P − E form an étale covering of P̂ .

We next consider the collection of all possible G×R T̂ ⊂ G×R Ŝ.

Proposition 2.3.7. The collection of G×R T̂ → P̂ just mentioned together with X−GZR ⊂
P̂ − E form a closed subscheme X̂ ⊂ P̂ , called the Kirwan blowup of X. Further, X̂ is

canonical in the sense that it is independent of the choice of slices or choice of projective

embedding.

Proof. We first show the independence from the particular choice of slices.

Let S1, S2 be two étale slices in P , such that T1 = S1 ∩X, T2 = S2 ∩X are the induced

slices for X. Let I1, I2 be the ideals of T1 ⊂ S1 and T2 ⊂ S2 respectively.

Near every point in P covered by S1 and S2, we can find a common étale refinement S12.

This can be seen as follows: Since [P/G] has affine diagonal, the fiber product S1×[P/G] S2

is an affine scheme with a (R × R)-action. For any point z fixed by R we may take a slice

S12 for z in S1 ×[P/G] S2.

Consider the composition pi : S12 → S1 ×[P/G] S2 → Si. Since S12 and Si are smooth of

the same dimension and pi induces an isomorphism on tangent spaces at z it must be étale

(up to shrinking). It is also evidently R-equivariant and hence is indeed an étale refinement

of S1 and S2. It follows that p∗1I1 = p∗2I2 = I12 as ideal sheaves on S12, defining T12 ⊂ S12.
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Taking Kirwan blowups commutes with étale base change. We thus obtain induced étale

maps p̂i : Ŝ12 → Ŝi, such that p̂∗1I
intr
1 = p̂∗2I

intr
2 = Iintr12 , defining the subscheme T̂12 ⊂ Ŝ12.

Since we may cover (G×R S1)×P (G×R S2) by étale opens of the form G×R S12 around

the fixed points of R, étale descent implies that we obtain a well-defined closed subscheme

X̂ ⊂ P̂ .

Regarding the choice of projective embedding, we may cover X by G-invariant affine

opens Uα ⊂ X. Let Uα → Vα be equivariant embeddings into smooth G-schemes. Using

those, we may define Ûα ⊂ V̂α by first taking intrinsic blowups and restricting to semistable

points. We observe that by Remark 2.1.1 the latter restriction is unambiguous, as the

unstable points of the intrinsic blowup are the ones whose G-orbit closure intersects the

unstable locus of the exceptional divisor. Therefore, by the canonical nature of intrinsic

blowups, for each α the Kirwan blowup Ûα is independent of the local embedding Uα →
Vα. Since we may choose those to come from a G-invariant open cover Vα ⊂ P of any

projective embedding X ⊂ P , it follows that X̂ is independent of the choice of projective

embedding.

Remark 2.3.8. When Xs is dense in X, then X̂ → X is birational. The other extreme

case is when XG = X, then X̂ = ∅. In general there are cases when (XG)red = Xred and

X̂ 6= ∅.

We let P1 = P̂ and X1 = X̂ be their respective Kirwan blowups associated with R1.

Then X1 ⊂ P1, and R(P1) = {R2, · · · , Rm, {1}}. We let X2 ⊂ P2 be X̂1 ⊂ P̂1, the Kirwan

blowups associated with R2, and so on, until we obtain Xm ⊂ Pm, having the property

R(Pm) = {1}.
We denote

X̃ = Xm, P̃ = Pm.

Definition 2.3.9. We call X̃ and M̃ = [X̃/G] the Kirwan partial desingularization of X

and the Artin stack M = [X/G], respectively.

Remark 2.3.10. When Xs is dense in X, M̃ →M is proper and birational.

2.4 The relative case

Kirwan blowups behave well in families over a smooth curve.
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Lemma 2.4.1. Let G be a reductive group; let V be a smooth G-scheme, C a smooth curve

and π : V → C a smooth G-equivariant morphism, where G acts on C trivially. Then V G

is smooth over C.

Proof. This is a standard fact as we are working over C. First, as V is smooth, V G is

smooth. To prove that V G is smooth over C, we need to show that for any closed x ∈ V G,

the projection dπ(x) : TxV
G → Tπ(x)C is surjective.

Indeed, as both V and V G are smooth, TxV
G = (TxV )G. Let v ∈ TxV so that dπ(x)(v) 6=

0. Applying the Reynolds operator R, we get that the G-invariant part of v, namely R(v) ∈
(TxV )G, has dπ(x)(R(v)) = dπ(x)(v), thus dπ(x) : TxV

G → Tπ(x)C is surjective.

The same proof gives the following result on étale slices.

Lemma 2.4.2. Let π : V → C be as in Lemma 2.4.1. If x is a closed point in V with

reductive stabilizer H and S is an étale slice for x, then π : S → C is smooth.

Corollary 2.4.3. Let π : V → C be as in Lemma 2.4.1. Then for any point c ∈ C we have

a canonical isomorphism (V̂ )c ∼= V̂c.

Proof. This follows immediately from the fact that V G is smooth over C.

We obtain the following result on intrinsic partial desingularizations.

Proposition 2.4.4. Let X = (X†)ss with X ⊂ P ⊂ PN × C be closed G-schemes as

before (cf. (2.1)) except where C is a smooth curve and G acts on PN via a homomorphism

G→ GL(N + 1). Let X̃ be the Kirwan partial desingularization of X. Then for any closed

c ∈ C, (X̃)c = X̃c.

Proof. Let X̂ be the Kirwan blowup of X with respect to G. By the construction of Kirwan

partial desingularization, the lemma follows from that (X̂)c = X̂c.

We are considering the case where X comes with an equivariant C-embedding X ⊂ V

where V → C is smooth. Let I ⊂ OV be the ideal sheaf of X ⊂ V . Then, applying the

Kirwan blowup π : X̂ → X we have a short exact sequence

0 −→ Iintr −→ O
V̂
−→ O

X̂
−→ 0.

Let Cc be the residue field at c ∈ C. We then have

Iintr ⊗OC Cc −→ O(V̂ )c
−→ O

(X̂)c
−→ 0.
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This fits into a diagram of exact sequences

Iintr ⊗OC Cc //

��

O
(V̂ )c

//

��

O
(X̂)c

//

��

0

(I ⊗OC Cc)intr // O
V̂c

// O
X̂c

// 0.

By the preceding corollary, the middle arrow is an isomorphism. Moreover, if I = Ifix⊕Imv

is the decomposition of I into its fixed and moving parts, since G is reductive,

I ⊗OC Cc =
(
Ifix ⊗OC Cc

)
⊕ (Imv ⊗OC Cc)

is the decomposition into fixed and moving parts since the action of G on C is trivial. We

conclude that the leftmost horizontal arrows have the same image under the identification

O
(V̂ )c
' O

V̂c
and thus we have a natural isomorphism (X̂)c ' X̂c.

2.5 Stacks with good moduli spaces

Here we collect some useful results about the structure of a certain class of Artin stacks,

namely those with affine diagonal admitting good moduli spaces, following the theory de-

veloped by Alper ét al. All the material of the section can be found in [Alp13] and [AHR15].

We have the following definition.

Definition 2.5.1. [Alp13, Definition 4.1] A morphism π : M → Y , where M is an Artin

stack and Y an algebraic space, is a good moduli space for M if the following hold:

1. π is quasi-compact and π∗ : QCoh(M)→ QCoh(Y ) is exact.

2. The natural map OY → π∗OM is an isomorphism.

The intuition behind the introduction of the notion of good moduli space is that stacks

M that admit good moduli spaces behave like quotient stacks [Xss/G] obtained from GIT

with good moduli space given by the map [Xss/G] → Xss//G. In this sense, it is a gener-

alization of GIT quotients for stacks.

We state the following properties of stacks with good moduli spaces.

Proposition 2.5.2. [Alp13, Proposition 4.7, Theorem 4.16, Proposition 9.1, Proposi-

tion 12.14] Let M be locally noetherian and π : M→ Y be a good moduli space. Then:



CHAPTER 2. KIRWAN PARTIAL DESINGULARIZATION 25

1. π is surjective.

2. π is universally closed.

3. Two geometric points x1, x2 ∈ M(k) are identified in Y if and only if their closures

{x1} and {x2} in M intersect.

4. Every closed point of M has reductive stabilizer.

5. Let y ∈ |Y | be a closed point. Then there exists a unique closed point x ∈ |π−1(y)|.

6. Suppose that

M′ //

��

M

��
Y ′ // Y

is a cartesian diagram of Artin stacks, with Y, Y ′ algebraic spaces.

(a) If M→ Y is a good moduli space, then M′ → Y ′ is a good moduli space.

(b) If Y ′ → Y is fpqc and M′ → Y ′ is a good moduli space, then M→ Y is a good

moduli space.

7. If M is of finite type, then Y is of finite type.

Regarding the étale local structure of good moduli space morphisms for stacks with

affine diagonal, we have the following theorem, which is a generalization of Luna’s étale

slice theorem for stacks.

Theorem-Definition 2.5.3. (Quotient chart) [AHR15, Theorem 2.9] Let M be a locally

noetherian Artin stack with a good moduli space π : M → M such that π is of finite type

with affine diagonal. If x ∈ M is a closed point, then there exists an affine scheme U with

an action of Gx and a cartesian diagram

[U/Gx]
Φ //

��

M
π

��
U//Gx //M

(2.7)

such that Φ is étale, representable, affine and U//Gx is an étale neighbourhood of π(x).

We refer to the data (U,Φ) as a quotient chart for M centered at x.
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2.6 Kirwan partial desingularization for stacks with good

moduli spaces

In Subsection 2.3.2, we constructed a Kirwan partial desingularization M̃ whenM was

a global quotient stack [X/G] obtained by GIT. We also had the usual GIT morphism

π : [X/G]→ X//G.

In this section, we generalize the construction to the case of stacks with good moduli

spaces.

Theorem 2.6.1. Let M be an Artin stack of finite type over C with affine diagonal. More-

over, suppose that π : M → M is a good moduli space morphism with π of finite type and

with affine diagonal. Then there exists a canonical DM stack M̃, called the Kirwan partial

desingularization of M, together with a morphism p : M̃ → M. Moreover, M̃ admits a

good moduli space M̃ and the induced morphism M̃ →M is proper.

Proof. The proof is analogous to the arguments of section 2.3.2. The only difference of

substance is the use of Theorem 2.5.3 instead of the usual Luna slice theorem.

LetMmax be the substack ofM whose points have stabilizers of the maximum possible

dimension. This is a closed substack of M. For any closed point x ∈ Mmax, applying

Theorem 2.5.3, we have a cartesian diagram

[Ux/Gx]
Φx //

πx
��

M
π

��
Ux//Gx //M.

(2.8)

The morphisms Φx cover the locus Mmax. We may apply the Kirwan blowup to each

quotient stack [Ux/Gx] to obtain good moduli space morphisms [Ûx/Gx]→ Ûx//Gx.

We need to check that these glue to give a stackM1 with a universally closed projection

M1 →M and a good moduli space M1 → M1. By the properties of the Kirwan blowup,

the maximum stabilizer dimension of M1 will be lower than that of M and we may then

repeat the procedure.

Suppose x, y are two closed points of M such that Gx, Gy are of maximum dimension.
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We obtain a fiber diagram of stacks

[Ux ×M Uy/(Gx ×Gy)] //

��

[Uy/Gy]

��
[Ux/Gx] //M

(2.9)

where Uxy := Ux ×M Uy is an affine scheme. This is due to the cartesian diagram

Ux ×M Uy //

��

M
∆M
��

Ux × Uy //M×M

and the fact that M has affine diagonal.

By the intrinsic nature of the Kirwan blowup, one may easily verify that we obtain a

diagram

[Ûxy/(Gx ×Gy)]

ww ''

[Ûx/Gx] [Ûy/Gy]

(2.10)

with affine, étale arrows and moreover there are canonical isomorphisms between [Ûxy/Gx×
Gy] and [Ûx/Gx]×M [Uy/Gy] and [Ux/Gx]×M [Ûy/Gy].

Using the charts [Ûx/Gx] together with a cover of M\Mmax, we therefore obtain an

atlas for a stack M1 with a map to M. By the canonical isomorphisms of the previous

paragraph, M1 is independent of the particular choices of charts for M.

Note that the morphisms Φx,Φy are strongly étale and hence stabilizer preserving. It

follows that all arrows in (2.9) are stabilizer preserving and thus both arrows in diagram

(2.10) are stabilizer preserving and étale and therefore must be strongly étale. We thus

obtain a corresponding diagram of étale arrows at the level of good moduli spaces of the
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Kirwan blowups

[Ûxy/(Gx ×Gy)]

ww ''

��

[Ûx/Gx]

��

[Ûy/Gy]

��

Ûxy//(Gx ×Gy)

ww ''
Ûx//Gx Ûy//Gy

where both squares are cartesian. Hence the morphisms [Ûx/Gx] → Ûx//Gx for all x ∈
Mmax together with an atlas of M \ Mmax glue to give a morphism M1 → M1. By

Proposition 2.5.2, this is a good moduli space morphism.

To see that M1 → M1 has affine diagonal, we may work étale locally. We consider the

diagram

[U/G] //

''

[U/G]×U//G [U/G] //

��

U//G

��
[U/G]× [U/G] // U//G× U//G

(2.11)

where the right square is cartesian. If U is affine, then [U/G] has affine diagonal by a stan-

dard argument (for example, see [Alp13, Example 12.10]), and U//G is also affine and thus

its diagonal is a closed immersion. It follows from the diagram and the usual cancellation

property that the diagonal of [U/G]→ U//G is affine. We can reduce to this case by using

the above cover of M1 by quotient charts. This shows that M1 → M1 has indeed affine

diagonal.

M1 also has affine diagonal since we have a cartesian diagram

[Ûxy/(Gx ×Gy)]

��

//M1

��
[Ûx/Gx]× [Ûy/Gy] //M1 ×M1
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where the lower horizontal arrows give an étale cover of M1 ×M1 and the left vertical

arrow is affine.

M1, M1 and the morphismM1 →M1 have the same properties asM, M andM→M

and hence we may continue inductively to obtain the partial Kirwan desingularization M̃
and its good moduli space M̃ → M̃ .

Finally, if G is finite in (2.11), then the diagonal of M → M is finite (cf. [MFK94,

Proposition 0.8]). Thus M̃ → M̃ is separated and by Proposition 2.5.2 also universally

closed, hence proper.



Chapter 3

Semi-perfect Obstruction Theory

This chapter contains necessary material about semi-perfect obstruction theories, as

developed in [CL11].

3.1 Perfect obstruction theory

Let U → C be a morphism, where U is a scheme of finite type and C a smooth quasi-

projective scheme. We first recall the definition of perfect obstruction theory [BF97, LT98].

Definition 3.1.1. (Perfect obstruction theory [BF97]) A (truncated) perfect (relative) ob-

struction theory consists of a morphism φ : E → L≥−1
U/C in Db(CohU) such that

1. E is of perfect amplitude, contained in [−1, 0].

2. h0(φ) is an isomorphism and h−1(φ) is surjective.

We refer to Obφ := H1(E∨) as the obstruction sheaf of φ.

Definition 3.1.2. (Infinitesimal lifting problem) Let ι : ∆ → ∆̄ be an embedding with ∆̄

local Artinian, such that I · m = 0 where I is the ideal of ∆ and m the closed point of ∆̄.

We call (∆, ∆̄, ι,m) a small extension. Given a commutative square

∆
g //

ι
��

U

��
∆̄ //

ḡ

??

C

(3.1)

30
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such that the image of g contains a point p ∈ U , the problem of finding ḡ : ∆̄ → U making

the diagram commutative is the “infinitesimal lifting problem of U/C at p”.

Definition 3.1.3. (Obstruction space) For a point p ∈ U , the intrinsic obstruction space to

deforming p is T 1
p,U/C := H1

(
(L≥−1

U/C )∨|p
)

. The obstruction space with respect to a perfect

obstruction theory φ is Ob(φ, p) := H1(E∨|p).

Given an infinitesimal lifting problem of U/C at a point p, there exists by the standard

theory of the cotangent complex [Ill71] a canonical element

ω
(
g,∆, ∆̄

)
∈ Ext1

(
g∗L≥−1

U/C |p, I
)

= T 1
p,U/C ⊗C I (3.2)

whose vanishing is necessary and sufficient for the lift ḡ to exist.

Definition 3.1.4. (Obstruction assignment) For an infinitesimal lifting problem of U/C at

p and a perfect obstruction theory φ the obstruction assignment at p is the element

obU (φ, g,∆, ∆̄) = h1(φ∨)
(
ω
(
g,∆, ∆̄

))
∈ Ob(φ, p)⊗C I. (3.3)

Suppose now that U is given by the vanishing of a global section s ∈ Γ (V, F ) where F

is a vector bundle on a scheme V which is smooth over C. Let J denote the ideal sheaf of

U in V and j : U → V the embedding. Then we have a perfect obstruction theory given by

the diagram

E

φ

��

[F∨|U
dV/Cs

∨
//

s∨

��

ΩV/C |U ]

L≥−1
U/M [J/J2

dV/C // ΩV/C |U ].

(3.4)

Since V is smooth over C we can find a lift g′ : ∆̄ → V of the composition j ◦ g.

Composing with the section s : V → F we obtain a morphism s ◦ g′ : ∆̄ → (g′)∗F . Since

g = g′|∆ factors through U , we must have s ◦ g′ ∈ I ⊗C F |p.
Let ρ : I ⊗C F |p → I ⊗C Obφ|p = I ⊗C Ob(φ, p) be the natural projection map.

Lemma 3.1.5. [KL12, Lemma 1.28] obU (φ, g,∆, ∆̄) = ρ (s ◦ g′).



CHAPTER 3. SEMI-PERFECT OBSTRUCTION THEORY 32

Proof. obU (φ, g,∆, ∆̄) is given by the composition

g∗E −→ g∗L≥−1
U/C −→ L≥−1

∆/∆̄
−→ I[1]. (3.5)

This fits into a commutative diagram

g∗ΩV/C

��

g∗ΩV/C

��

obV

""
g∗E

φ //

��

g∗L≥−1
U/C

// I[1]

g∗F∨[1]

55

(3.6)

Since V is smooth over C, the map obV must be zero. Using the distinguished triangle of

the first column, we get a long exact sequence in cohomology

Hom(g∗ΩV/C , I) = I ⊗C TV/C |p
(dV/Cs∨)

∨

−−−−−−−→ Hom(g∗F∨, I) = I ⊗C F |p (3.7)

−→ Ext1(g∗E, I) −→ Ext1(g∗ΩV/C , I).

Now, the fact that obV is zero implies that obU (φ, g,∆, ∆̄) lies in the cokernel I⊗C Ob(φ, p)

of the map (dV/Cs
∨)∨ in (3.7). It is now easy to see using the diagram

g∗ΩV/C |U // g∗E //

g∗φ

��

g∗F∨|U [1]

(g′)∗s∨|∆

&&��
g∗L≥−1

V/C |U //

��

g∗L≥−1
U/C

��

// g∗L≥−1
U/V

//

��

g∗J/J2[1]

��
L≥−1

∆̄/C
|∆ // L≥−1

∆/C
// L≥−1

∆/∆̄
// I[1],

that indeed obU (φ, g,∆, ∆̄) = ρ(s ◦ g′).
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3.2 Symmetric obstruction theory

Symmetric obstruction theories are a special case of perfect obstruction theories. For

simplicity, we take C = SpecC.

Theorem 3.2.1. [Beh09, Definition 3.5] A perfect obstruction theory φ : E → L≥−1
U is

symmetric if E is endowed with an isomorphism θ : E → E∨[1] satisfying θ∨[1] = θ.

Remark 3.2.2. The obstruction sheaf of a symmetric obstruction theory satisfies Obφ =

H1(E∨) ' H0(E) ' H0(L≥−1
U ) = ΩU .

Example 3.2.3. Suppose that U = (df = 0) ⊂ V , where V is smooth and f : V → C is a

regular function. Then the two-term complex

E = [TV |U
Hf−−→ ΩV |U ],

where the arrow is given by the Hessian of f , is a symmetric obstruction theory for U .

However, there are symmetric obstruction theories which are not of this form, as was

shown in [PT14].

3.3 Semi-perfect obstruction theory

Definition 3.3.1. Let φ : E → L≥−1
U/C and φ′ : E′ → L≥−1

U/C be two perfect obstruction theories

and ψ : Obφ → Obφ′ be an isomorphism. We say that the obstruction theories give the same

obstruction assignment via ψ if for any infinitesimal lifting problem of U/C at p

ψ
(
obU (φ, g,∆, ∆̄)

)
= obU (φ′, g,∆, ∆̄) ∈ Ob(φ′, p)⊗C I. (3.8)

We are now ready to give the definition of a semi-perfect obstruction theory.

Definition 3.3.2. (Semi-perfect obstruction theory [CL11]) Let M → C be a morphism,

where M is a DM stack, proper over C, of finite presentation and C is a smooth quasi-

projective scheme. A semi-perfect obstruction theory φ consists of an étale covering {Uα}α∈A
of M and perfect obstruction theories φα : Eα → L≥−1

Uα/C
such that

1. For each pair of indices α, β, there exists an isomorphism

ψαβ : Obφα |Uαβ −→ Obφβ |Uαβ
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so that the collection (Obφα , ψαβ) gives descent data of a sheaf on M.

2. For each pair of indices α, β, the obstruction theories Eα|Uαβ and Eβ|Uαβ give the

same obstruction assignment via ψαβ (as in Definition 3.3.1).

Remark 3.3.3. The obstruction sheaves {Obφα}α∈A glue to define a sheaf Obφ onM. This

is the obstruction sheaf of the semi-perfect obstruction theory φ.

Suppose now that M → C is as above and admits a semi-perfect obstruction theory.

Then, for each α ∈ A, we have

CUα/C ⊂ NUα/C = h1/h0((L≥−1
Uα/C

)∨) ↪
h1/h0(φ∨α)−−−−−−→ h1/h0(E∨α ) ⊂ h1(E∨α ),

where CUα/C and NUα/C denote the intrinsic normal cone stack and intrinsic normal sheaf

stack respectively, where by abuse of notation we identify a sheaf F on M with its sheaf

stack.

We therefore obtain a cycle class [cφα ] ∈ Z∗Obφα by taking the pushforward of the cycle

[CUα/C ] ∈ Z∗NUα/C .

Theorem-Definition 3.3.4. [CL11, Theorem-Definition 3.7] LetM be a DM stack, proper

over C, of finite presentation and C a smooth quasi-projective scheme, such that M→ C

admits a semi-perfect obstruction theory φ. The classes [cφα ] ∈ Z∗Obφα glue to define an

intrinsic normal cone cycle [cφ] ∈ Z∗Obφ. Let s be the zero section of the sheaf stack Obφ.

The virtual cycle of M is defined to be

[M, φ]vir := s![cφ] ∈ A∗M,

where s! : Z∗Obφ → A∗M is the Gysin map. This virtual cycle satisfies all the usual prop-

erties, such as deformation invariance.

Remark 3.3.5. One can also consider étale covers of M by DM quotient stacks [Uα/Gα],

where Gα acts on Uα with finite stabilizers. Then there is a natural generalization of the

notion of semi-perfect obstruction theory and Theorem 3.3.4 in this setting. This will be

used in Chapter 6 in order to glue the intrinsic normal cone cycles obtained by perfect

obstruction theories on a cover of this form.



Chapter 4

Local Calculations

In this chapter, we collect a series of lemmas and propositions that will be useful in

subsequent chapters. We encourage the reader to consult Subsection 5.1.1 and in particular

Definition 5.1.1 and Definition 5.1.5 of a d-critical chart and an embedding of d-critical

charts prior to reading the contents of this chapter, as we will be using this terminology

when necessary.

4.1 Local models and standard forms

4.1.1 The absolute case

Let V be a smooth affine G-scheme. The action of G on V induces a morphism g⊗OV →
TV and its dual σV : ΩV → g∨ ⊗OV .

We consider the following data on V .

Setup-Definition 4.1.1. The quadruple (V, FV , ωV , DV ), where FV is a G-equivariant

vector bundle on V , ωV an invariant section with zero locus U = (ωV = 0) ⊂ V and

DV ⊂ V an effective invariant divisor, satisfying:

1. σV (−DV ) : ΩV (−DV )→ g∨(−DV ) factors through a morphism φV as shown

ΩV (−DV ) −→ FV
φV−−→ g∨(−DV ). (4.1)

2. The composition φV ◦ ωV vanishes identically.

35
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3. Let R be the identity component of the stabilizer group of a closed point in V with

closed orbit. Let V R denote the fixed point locus of R. Then φV |V R composed with

the projection g∨(−DV )→ r∨(−DV ) is zero, where r is the Lie algebra of R.

gives rise to data

ΛV = (U, V, FV , ωV , DV , φV )

on V . We say that these data give a weak local model structure for V . We also say that U

is in weak standard form.

Remark 4.1.2. Note that if f : V → A1 is a G-invariant function on V , then (U, V,ΩV , df, 0, σV )

give a weak local model for V . This data is equivalent to an invariant d-critical chart

(U, V, f, i) for U (see Definition 5.1.1 later). Therefore, an invariant d-critical locus (cf.

Subsection 5.1.2) is a particular case of weak standard form.

4.1.2 Blowup bundle and section

Let V be a smooth affine G-scheme, FV a G-vector bundle on V and ωV ∈ Γ(V, FV )G

a G-invariant section. Then U = (ωV = 0) is a G-invariant subscheme of V . Since G is

reductive, we have a decomposition

FV |V G = FV |fixV G ⊕ FV |
mv
V G . (4.2)

Definition 4.1.3. (Blowup bundle) Let π : V̂ → V be the Kirwan blowup of V associated

with G. The blowup bundle of FV , denoted by F
V̂

, is defined as

F
V̂

:= ker
(
π∗FV −→ π∗(FV |V G) −→ π∗(FV |mvV G)

)
.

The blowup section

ω
V̂
∈ Γ(V̂ , F

V̂
),

is the lift of ωV , which exists since π∗ωV maps to zero in π∗(FV |mvV G).

Proposition 4.1.4. Let U ′ ⊂ V̂ be defined by the vanishing of ω
V̂

. Then U ′ is the Kirwan

blowup Û of U .

Proof. Let I be the ideal of U in V , generated by the section ω. We need to check that

the ideal Iintr given by (2.5) coincides with the ideal generated by ω
V̂

. By the above, it
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suffices to work locally. But in local coordinates ω
V̂

is obtained from π∗ωV by multiplying

the moving components with ξ−1, where ξ is the local equation of the exceptional divisor,

which immediately implies the claim.

The next lemma states that the structure of a weak local model behaves well under

taking Kirwan blowups and slices thereof.

Lemma 4.1.5. Let ΛV = (U, V, FV , ωV , DV , φV ) be as in Setup 4.1.1. Let π : V̂ →
V be the Kirwan blowup of V associated with G. Then we have induced data Λ

V̂
=

(Û , V̂ , F
V̂
, ω

V̂
, D

V̂
, φ

V̂
), where F

V̂
is the blowup bundle of FV , ω

V̂
the blowup section and

D
V̂

= π∗DV + 2E, that give a weak local model structure for V̂ .

Moreover, for a slice S of a closed point x in V̂ with closed G-orbit and stabilizer H,

we obtain induced data ΛS = (T, S, FS , ωS , DS , φS), where FS is an H-equivariant bundle

on S with a section ωS and the conditions of Setup 4.1.1 are satisfied for S as well.

Proof. By pulling back via π : V̂ → V the factorization in (4.1), we obtain

π∗ΩV (−DV ) −→ π∗FV
π∗φV−−−→ g∨(−DV ).

Let E ⊂ V̂ be the exceptional divisor. By slight abuse of notation, we use DV to also denote

the pull-back of DV to the blow-up. Then, applying (3) with R = G, π∗φV factors through

g∨(−E − DV ). Using the obvious inclusion Ω
V̂

(−E) → π∗ΩV , we get that the morphism

Ω
V̂

(−E −DV )→ g∨(−E −DV ) induced by the action of G, factors as

Ω
V̂

(−E −DV ) −→ π∗ΩV (−DV ) −→ π∗FV −→ g∨(−E −DV ).

We have the following diagram

Ω
V̂

(−E −DV ) //

��

π∗FV //

��

g∨(−E −DV )

��
Ω
V̂

(−E −DV )|E // (π∗FV ) |E //

��

g∨(−E −DV )|E

π∗
(
FV |mvV G

)
66

(4.3)
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Note that

(π∗FV ) |E ∼= π∗
(
FV |fixV G

)
⊕ π∗

(
FV |mvV G

)
(4.4)

and by equivariance we see that π∗φV |E maps π∗
(
FV |fixV G

)
to zero inside g∨ (−E −DV ) |E .

This induces the last up-right arrow of the diagram. Therefore by taking kernels, we get a

factorization

σ
V̂

: Ω
V̂

(−D
V̂

) −→ F
V̂

φ
V̂−−→ g∨(−D

V̂
), (4.5)

where D
V̂

= 2E +DV . This shows (1) for V̂ .

By looking at the diagram, we can easily see that it follows from the identical vanishing

of φV ◦ ωV on V that φ
V̂
◦ ω

V̂
vanishes identically on V̂ . This is (2).

Let us check (3) on V̂ . Away from the exceptional divisor E, φ
V̂

is the same as φV and

hence we have the same vanishing on V̂ R −E. On the other hand, on V̂ , Kirwan’s general

theory in [Kir85] guarantees that no new R can arise from the blow-up procedure and (V̂ )R

is the proper transform of V R. It readily follows that, since φ
V̂
|
(V̂ )R

composed with the

projection onto r∨(−D
V̂

) is vanishing on V̂ − E, it vanishes on (V̂ )R as desired.

Next we restrict (4.5) to a slice S in V̂ . The fibration G ×H S → G/H with fiber S

gives an exact sequence

0 −→ (g/h)∨ −→ Ω
V̂
|S −→ ΩS −→ 0,

where h is the Lie algebra of H. The composition of the first arrow (g/h)∨ → Ω
V̂
|S with the

homomorphism σ
V̂

: Ω
V̂
|S → g∨ induced by the action of G is the inclusion (g/h)∨ ↪→ g∨.

Therefore (g/h)∨(−D
V̂

)|S is a subbundle of Ω
V̂

(−D
V̂

)|S and π∗FV |S as well as g∨(−D
V̂

)|S .

If we take the quotient of (4.5) restricted to S by (g/h)∨(−D
V̂

)|S , we obtain a factorization

σS : ΩS(−DS) −→ FS
φS−→ h∨(−DS) (4.6)

of the morphism σS induced by the action of H on S, where DS is the restriction of D
V̂

to

S. This shows (1) for S. Finally, it is not hard to verify that (2) and (3) are also true.

We may now give the following definition, which will be useful when we introduce the

concept of Ω-compatibility later.
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Definition 4.1.6. We say that the data ΛV = (U, V, FV , ωV , DV , φV ) give a local model for

V if either they are the data of a d-critical chart ΛV = (U, V,ΩV , 0, df) or are obtained by

such after a sequence of Kirwan blowups and/or taking slices of closed points with closed

orbit. We also say that U is then in standard form.

4.1.3 The relative case

In analogy with the absolute case, we give the following definition.

Definition 4.1.7. We say that the tuple ΛV = (U, V, FV , ωV , DV , φV ) gives a relative local

model structure on U if V is a smooth G-equivariant scheme over C, in addition to the rest

of the data satisfying Setup-Definition 4.1.1 and one of the following:

1. FV = ΩV/C , DV = 0 and φV : ΩV/C → g∨ is the dual of the G-action. In this case,

we call ΛV a quasi-critical chart on V .

2. ΛV is obtained by a quasi-critical chart by a sequence of Kirwan blowups and taking

étale slices of closed points with closed orbit.

We then say that the C-scheme U is in relative standard form.

4.1.4 Obstruction theory of local model

Suppose that U is in weak standard form for data ΛV of a local model on V .

Lemma 4.1.8. The following sequence is a complex:

KV = [g
σ∨V−→ TV |U

(dV ω∨V )
∨

−−−−−−→ FV |U
φV−→ g∨(−DV )]. (4.7)

Proof. Since ωV is G-invariant, the composition (dV ω
∨
V )∨ ◦ σV = 0. Moreover, since φV ◦

ωV = 0, by differentiating we obtain φV ◦ (dV ω
∨
V )∨ = −ω∨V ◦ dV φV , which is zero when

restricted to U = (ωV = 0). This proves the lemma.

Definition 4.1.9. (Reduced tangent and obstruction sheaf) We define the reduced tangent

sheaf and reduced obstruction sheaf of V to be

T red
V := cokerσ∨V , and F red

V := kerφV .

The section ωV induces a section of F red
V , denoted by ωred

V .
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The restriction of the complex (4.7) to the stable part U s of U gives rise (and is quasi-

isomorphic) to a two-term complex

Kred
V = [

(
dV (ωred

V )∨
)∨

: T red
V |Us −→ F red

V |Us ].

We denote coker
(
dV (ωred

V )∨
)∨|Us by Obred

V . One can easily check that there are natural

isomorphisms

H1(KV )|Us ∼= H1(KV |Us) ∼= Obred
V . (4.8)

We refer to Obred
V as the reduced obstruction sheaf. This is validated by the following

proposition.

Proposition 4.1.10. (Reduced obstruction theory) The dual of Kred
V induces a perfect

obstruction theory on the DM stack [U s/G].

Proof. On V s, σ∨V is injective and φV is surjective. The latter follows from the fact that the

surjective morphism σ∨V (−DV ) factors through φV . In particular, the two terms of Kred
V are

bundles and U s is the zero locus of ωred
V |V s .

Let qV : V s → [V s/G] be the quotient morphism. We have the exact triangle of truncated

cotangent complexes

q∗V L
≥−1
[V s/G] −→ L≥−1

V s −→ g∨ −→ q∗V L
≥−1
[V s/G][1],

from which we deduce that T red
V |V s = q∗V T

≤1
[V s/G]. Therefore, using the same triangle for U s,

we find that

q∗UL
≥−1
[Us/G] = [Is/(Is)2 −→ Ωred

V |Us ],

where Is is the ideal of U s in V s, Ωred
V |V s =

(
T red
V |V s

)∨
= kerσV |V s = q∗V Ω[V s/G] =

q∗V L
≥−1
[V s/G] and that there is an arrow

Kred
V |∨Us

��

[F red
V |∨Us

dV (ωred
V )∨
//

(ωred
V )∨

��

Ωred
V |Us ]

q∗UL
≥−1
[Us/G] [Is/(Is)2 dV // Ωred

V |Us ].
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Therefore Kred
V |Us descends to a perfect obstruction theory on [U s/G].

Remark 4.1.11. Since the rank of FV is equal to dimV , in order to obtain a zero-

dimensional virtual cycle, we need to replace FV |Us by F red
V |Us, which has rank dimV −

dimG = dim[V s/G]. Note that the surjective morphism FV |Us
φV→ g∨(−DV ) induces a

twisted cosection ObUs → g∨(−DV ) (cf. [KL13a]), which enables us to make the perfect

obstruction theory 0-dimensional.

4.2 Ω-equivalence

We introduce the following definition.

Definition 4.2.1. Let V be a smooth affine G-scheme and FV a G-equivariant bundle on

V . We say that two invariant sections ωV , ω̄V ∈ Γ(V, FV ) are Ω-equivalent if

1. (ωV ) = (ω̄V ) =: IU as ideals in OV , and

2. there exist equivariant morphisms A,B : FV → TV such that

ω∨V = ω̄∨V + ω̄∨V ◦A∨ ◦ (dω̄∨V )
(
mod I2

U

)
, (4.9)

ω̄∨V = ω∨V + ω∨V ◦B∨ ◦ (dω∨V )
(
mod I2

U

)
. (4.10)

The reason for introducing this notion is the following proposition.

Proposition 4.2.2. Let U be an affine G-invariant d-critical scheme and (U, V, f, i) and

(U, V, g, i) two invariant d-critical charts (see Definition 5.1.1) with V an affine, smooth

G-scheme. Then ωf = df, ωg = dg are Ω-equivalent sections of ΩV .

Proof. We may assume that f − g ∈ I2
U , where IU is the ideal of U in V .

Let x1, ..., xn be étale coordinates on V . Let us write fi for ∂f
∂xi

, fij for ∂2f
∂xi∂xj

and Hf for

the Hessian of f for convenience (and similarly for g). Then we have IU = (fi)
n
i=1 = (gi)

n
i=1.

Moreover f − g ∈ I2
U implies that

f = g +
∑
k,l

akl · gk · gl, akl ∈ Γ(OV ). (4.11)
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Differentiating, we obtain for any i and pair (i, j) the relations

fi = gi +
∑
k,l

akl · gki · gl +
∑
k,l

akl · gk · gli mod I2
U , (4.12)

fij = gij +
∑
k,l

akl · glj · gki +
∑
k,l

akl · gkj · gli mod IU .

Note that we may re-write (4.12) as

ωf = ωg +Hg ◦A ◦ dg
(
mod I2

U

)
,

where A is a morphism A : ΩV → TV .

Since df , dg and Hg are invariant, applying the Reynolds operator we can assume that

A is equivariant. Hence

ω∨f = ω∨g + ω∨g ◦A∨ ◦ (dV ω
∨
g )
(
mod I2

U

)
, (4.13)

and similarly for g we have

ω∨g = ω∨f + ω∨f ◦B∨ ◦ (dV ω
∨
f )
(
mod I2

U

)
. (4.14)

This proves the proposition.

The following two lemmas show that Ω-equivalence is preserved by the operations of

Kirwan blowup and taking slices of closed orbits.

Notation 4.2.3. In what follows

ΛV = (U, V, FV , ωV , DV , φV ), Λ̄V = (U, V, FV , ω̄V , DV , φV )

will denote data of a weak local model structure on V . Similarly on the Kirwan blowup we

write

Λ
V̂

= (Û , V̂ , F
V̂
, ω

V̂
, D

V̂
, φ

V̂
), Λ̄

V̂
= (Û , V̂ , F

V̂
, ω̄

V̂
, D

V̂
, φ

V̂
)

and on an étale slice thereof

ΛS = (T, S, FS , ωS , DS , φS), Λ̄S = (T, S, FS , ω̄S , DS , φS).
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Lemma 4.2.4. Let V be a smooth affine G-scheme and ΛV , Λ̄V as above, such that ωV , ω̄V

are Ω-equivalent with A,B as in (4.9) and (4.10). Then the blowup sections ω
V̂
, ω̄

V̂
are

Ω-equivalent (via induced equivariant morphisms Â, B̂ : F
V̂
→ T

V̂
).

Proof. Let iE : E → V̂ be the exceptional divisor of the blowup π : V̂ → V . We have

NV G/V = TV |mvV G and therefore the relative Euler sequence

0 −→ OE(E) −→ π∗
(
TV |mvV G

) α−→ TE/V G(E) −→ 0. (4.15)

We also have the tangent sequence

0 −→ T
V̂

dπ−→ π∗TV
β−→ iE∗TE/V G(E) −→ 0. (4.16)

Using these and the definition of F
V̂

we have the following commutative diagram

0 // F
V̂

γ //

Â
��

π∗FV //

π∗A

��

π∗FV |E //

��

π∗
(
FV |mvV G

)
��

0 // T
V̂

dπ // π∗TV //

β **

π∗TV |E // π∗
(
TV |mvV G

)
α

��
TE/V G(E).

(4.17)

By (4.15), (4.16) and (4.17) it follows that the composition β ◦π∗A ◦γ is zero and therefore

we obtain an equivariant morphism Â : F
V̂
→ T

V̂
induced by π∗A.

It remains to check that Â satisfies (4.9) for the blowup sections ω
V̂

and ω̄
V̂

.

Let us denote

η = ω∨V − ω̄∨V − ω̄V ◦A ◦ dV ω̄∨V (4.18)

where we consider η as a C-linear, equivariant morphism F∨V → OV .

It is easy to check that (4.9) is equivalent to η(e∨i ) ∈ I2
U , where {e1, ..., en} is any local

frame for FV .

Let us choose {e1, ..., en} to be a local frame for FV (possibly after shrinking V around

x ∈ V G) with a linear action of G. We can find such a frame by lifting equivariantly a

basis of FV |x to a neighbourhood of x, since G is reductive. We can also take a local frame
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{dx1, ..., dxn} for ΩV on which G acts linearly by a similar argument.

Since G acts linearly on e1, ..., en we have a splitting C〈e1, ..., en〉 = C〈wfixi 〉 ⊕ C〈wmvj 〉
into invariant and moving subspaces. Then {π∗wfixi , ξπ∗wmvj } is a local frame for F

V̂
, where

ξ is a local equation of the exceptional divisor of the blowup.

By equivariance, we see that

η((wfixi )∨) ∈ (I2
U )fix, η((wmvj )∨) ∈ (I2

U )mv (4.19)

We can pull back (4.9) to obtain

π∗ω∨V = π∗ω̄∨V + π∗ω̄V ◦ π∗A ◦ π∗
(
dV ω̄

∨
V

) (
mod π∗I2

U

)
. (4.20)

The diagram of C-linear morphisms

π∗F∨V
π∗(dV ω̄∨V )

//

γ∨

��

π∗ΩV

��

π∗A∨ // π∗F∨V

γ∨

��

π∗ω̄∨ // O
V̂

F∨
V̂ d

V̂
ω̄∨
V̂

// Ω
V̂

Â∨
// F∨
V̂

ω̄∨
V̂

==
(4.21)

commutes when evaluated on the π∗e∨i and hence

π∗ω̄∨V ◦ π∗A∨ ◦
(
dV ω̄

∨
V

)
= ω̄∨

V̂
◦ Â∨ ◦

(
d
V̂
ω̄∨
V̂

)
◦ γ∨. (4.22)

Therefore we may re-write (4.20) as

π∗η =
(
ω∨
V̂
− ω̄∨

V̂
− ω̄∨

V̂
◦ Â∨ ◦

(
d
V̂
ω̄∨
V̂

))
◦ γ∨

(
mod π∗I2

U

)
. (4.23)

For convenience, let us denote η̂ = ω∨
V̂
− ω̄∨

V̂
− ω̄∨

V̂
◦ Â∨ ◦

(
d
V̂
ω̄∨
V̂

)
.

By equivariance, we can un-twist by γ (which is multiplication by ξ, the equation of the

exceptional divisor, on the moving part of π∗FV ) to obtain

ω∨
V̂

= ω̄∨
V̂
− ω̄∨

V̂
◦ Â∨ ◦

(
d
V̂
ω̄∨
V̂

)(
mod I2

Û

)
(4.24)

More precisely, we need to show that η̂ maps the dual to a local frame of F
V̂

into I2
Û

.
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(4.19) implies that

η̂
(
π∗(wfixi )∨

)
∈ π∗(I2

U )fix ⊂ I2
Û

(4.25)

and η̂
(
π∗(wmvj )∨

)
∈ π∗(I2

U )mv. By the proposition following this lemma, we have (I2
U )mv ⊂

ImvU IU and therefore

π∗(I2
U )mv ⊂ π∗ImvU π∗IU ⊂ ξI2

Û
.

In particular 1
ξ η̂
(
π∗(wmvj )∨

)
∈ I2

Û
.

By the definition of Â and equivariance, we have that Â∨(d
V̂
ξ) ∈ π∗(FmvV )∨ ⊂ ξF∨

V̂
and

thus Â∨(
d
V̂
ξ

ξ ) ∈ F∨
V̂

. Since

ω̄∨
V̂
◦Â∨◦d

V̂
ω̄∨
V̂

(
1

ξ
π∗(wmvj )∨

)
=

1

ξ
ω̄∨
V̂
◦Â∨◦d

V̂
ω̄∨
V̂

(
π∗(wmvj )∨

)
−1

ξ
ω̄∨
V̂

(
π∗(wmvj )∨

)
ω̄∨
V̂
◦Â∨◦

d
V̂
ξ

ξ

it follows that η̂
(

1
ξπ
∗(wmvj )∨

)
= 1

ξ η̂
(
π∗(wmvj )∨

)(
mod I2

Û

)
and so

η̂

(
1

ξ
π∗(wmvj )∨

)
∈ I2

Û
. (4.26)

Combining (4.25) and (4.26) concludes the proof and yields relation (4.9) for the blowup.

(4.10) for the blowup follows by the same argument.

Proposition 4.2.5. Suppose that V is a smooth affine G-scheme and U is an invariant

closed subscheme with ideal IU ⊂ OV . Then (I2
U )mv ⊂ ImvU IU .

Proof. Let f ∈ (I2
U )mv. Since the action of G on I2

U is rational, f is contained in an

irreducible finite dimensional G-invariant subspace V ⊂ (I2
U )mv on which G acts linearly.

Let W be the C-linear span of
⋃
T V

mv
T where T stands for any maximal torus in G and

V mv
T is the moving part of V with respect to the action of T . This is G-invariant, since

v ∈ V mv
T implies that gv ∈ V mv

gTg−1 , and hence by irreducibility W = V . In particular, there

exists a finite collection {T1, . . . , Tk} of maximal tori such that V is the span of
⋃k
i=1 V

mv
Ti

.

We may thus write f = f1 + ...+ fk with fi ∈ (I2
U )mvTi ⊂ (I2

U )mv.

By working with fi and Ti, we may assume that G = T is a torus. By further splitting

f into its summands, we can assume that it is an eigenvector for the action of T of weight

λ. Since G is reductive, there are finite-dimensional G-invariant subspaces W fix ⊂ IfixU and
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Wmv ⊂ ImvU on which G acts linearly with diagonal bases {wfixi } and {wmvj } respectively

such that f ∈ W 2 and twmvj = tλjwmvj for t ∈ G. Since W fixWmv ⊂ ImvU IU , we may

further reduce to the case f =
∑

k,l aklw
fix
k wfixl +

∑
k,l bklw

mv
k wmvl with akl, bkl ∈ C. By the

G-action on f , we obtain

tλf =
∑
k,l

aklw
fix
k wfixl +

∑
k,l

bklt
λk+λlwmvk wmvl

and therefore ∑
k,l

aklw
fix
k wfixl +

∑
λk+λl=0

bklw
mv
k wmvl = 0

and

f =
∑

λk+λl 6=0

bklw
mv
k wmvl ∈ (ImvU )2 ⊂ ImvU IU ,

which concludes the proof.

Lemma 4.2.6. Let S be an étale slice of a closed point x ∈ V̂ with closed orbit and stabilizer

H. Let Λ
V̂

, Λ̄
V̂

be data of a weak local model on V̂ such that ω
V̂
, ω̄

V̂
are Ω-equivalent. Let

ωS , ω̄S be the two sections obtained as part of the weak local model induced on S using these

two choices of data and Lemma 4.1.5. Then ωS , ω̄S are also Ω-equivalent.

Proof. Let Û be the zero locus of ω̄
V̂

(or equivalently ω
V̂

) and T be the zero locus of ω̄S

(equivalently ωS). The commutative diagram

0 // (g/h)∨ // Ω
V̂
|S

qS //

σ∨
V̂
��

ΩS
//

σ∨S
��

0

0 // (g/h)∨ // g∨ // h∨ // 0

induces an isomorphism of kernels Ω
V̂
|red
T

qS |T−−−→ ΩS |red
T of σ∨

V̂
|T and σ∨S |T respectively. Since

both exact sequences are locally split we may shrink S around x and find a (H-equivariant)

right inverse rS : ΩS → Ω
V̂
|S for qS , which is then also an inverse for qS |T when restricted

to ΩS |red
T .

By the same argument for the commutative diagram (cf. the definition of FS in the
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proof of Lemma 4.1.5)

0 // (g/h)∨ (−DS) // F
V̂
|S

γS //

φ
V̂

��

FS //

φS

��

0

0 // (g/h)∨ (−DS) // g∨(−DS) // h∨(−DS) // 0

we may find a right inverse δS : FS → F
V̂
|S , which is an inverse for γS when restricted to

FS |red
T , the kernel of φS |T .

Consider the (non-commutative) diagram

F∨
V̂
|T

d
V̂
ω̄∨
V̂ // Ω

V̂
|T

qS

��

Â∨ // F∨
V̂
|T

ω̄∨
V̂ // I

Û
/I2
Û
|T

qS
��

F∨S |T dS ω̄
∨
S

//

γ∨S

OO

ΩS |T
Â∨S

// F∨S |T

γ∨S

OO

ω̄∨S

// IT /I
2
T ,

where we define Â∨S := δ∨S ◦ Â∨ ◦ rS . The left- and rightmost squares are commutative.

We check now that the composition qS ◦ ω̄∨V̂ ◦ Â
∨ ◦d

V̂
ω̄∨
V̂
◦γ∨S is equal to ω̄∨S ◦ Â∨S ◦dSω̄∨S .

By Lemma 4.1.5 and Lemma 4.1.8, the above diagram factors through the sub-diagram

Ω
V̂
|red
T

//

qS

��

Ω
V̂
|T

qS

��

Â∨ // F∨
V̂
|T //

(
F
V̂
|red
T

)∨

ΩS |red
T

// ΩS |T
Â∨S

// F∨S |T

γ∨S

OO

//
(
FS |red

T

)∨
.

γ∨S

OO

Observe now that by the definition of Â∨S the outer square in this diagram commutes. This

immediately implies that indeed

qS ◦ ω̄∨V̂ ◦ Â
∨ ◦ d

V̂
ω̄∨
V̂
◦ γ∨S = ω̄∨S ◦ Â∨S ◦ dSω̄∨S . (4.27)

Since ω∨S = qS ◦ ω∨V̂ ◦ γ
∨
S and ω̄∨S = qS ◦ ω̄∨V̂ ◦ γ

∨
S , applying qS ◦ (•) ◦ γ∨S to the restriction of

(4.9) to the slice S and using (4.27) we obtain

ω∨S = ω̄∨S + ω̄∨S ◦ Â∨S ◦ dSω̄∨S
(
mod I2

T

)
.
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The exact same argument can be used to show the existence of B̂S .

The next lemma states that for the purposes of comparing obstruction sheaves and

assignments we may replace a section by any Ω-equivalent section without any effect.

Given two Ω-equivalent ωV , ω̄V ∈ H0(FV ), denoting U = (ωV = 0) = (ω̄V = 0), we

obtain

(
dω∨V

)∨ |U , (dω̄∨V )∨ |U : TV |U −→ FV |U .

Lemma 4.2.7. Let V be a smooth affine G-scheme and ΛV , Λ̄V data of a weak local model

on V , such that ωV , ω̄V are Ω-equivalent. Then

coker
(
dω∨V

)∨ |U = coker
(
dω̄∨V

)∨ |U . (4.28)

Moreover, the two obstruction theories on U induced by ωV and ω̄V give the same obstruction

assignments via the morphism (4.3.7).

Proof. We check that im (dω∨V )∨ |U = im (dω̄∨V )∨ |U . Since ωV , ω̄V are Ω-equivalent, there

exist equivariant morphisms A,B : F → TV such that

ω∨V = ω̄∨V + ω̄∨V ◦A∨ ◦ (dω̄∨V )
(
mod I2

U

)
, (4.29)

ω̄∨V = ω∨V + ω∨V ◦B∨ ◦ (dω∨V )
(
mod I2

U

)
.

Differentiating (4.29) and dualizing, we obtain

(
dω∨V

)∨
=
(
dω̄∨V

)∨
+
(
dω̄∨V

)∨ ◦A ◦ (dω̄∨V )∨ (mod IU ) . (4.30)

This implies that im (dω∨V )∨ |U ⊆ im (dω̄∨V )∨ |U . By the same argument, using the second

equation in (4.29), the first claim follows.

For the obstruction assignments, consider an infinitesimal lifting problem of U at p. Let

Ob = coker (dω∨V )∨ |U and

ρ : I ⊗C FV |p → I ⊗C H
1(E|p) = I ⊗C H

1(Ē|p)

be the quotient morphism. Then by Lemma 3.1.5, we need to show that ρ(ωV ◦ g′) =

ρ(ω̄V ◦ g′). But this holds, since dualizing (4.29) and composing with g′ we have that
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ωV ◦ g′ − ω̄V ◦ g′ ∈ I ⊗C im (dω∨V )∨ |p.

4.3 Ω-compatibility

We begin with the following lemma, describing how normal bundles behave with respect

to Kirwan blowups. It will be used repeatedly in the rest of this section.

Lemma 4.3.1. Let Φ: V ↪→ W be a G-equivariant embedding of smooth affine schemes.

Let NV/W be the normal bundle of V in W , and let bl(NV/W ) as in Definition 4.1.3. Then

there is a natural isomorphism bl(NV/W ) ∼= N
V̂ /Ŵ

.

Proof. Let x ∈ V G. Up to shrinking, we have a commutative diagram

V

Φ

��

// TxV = An

dΦ
��

W // TxW = An+m,

where the maps V → TxV, W → TxW are equivariant étale and the G-action on the tangent

spaces is linear. Since G is reductive, we may pick coordinates x1, . . . , xn on An on which G

acts linearly and extra coordinates xn+1, . . . , xn+m with a linear G-action on An+m such that

the embedding An → An+m takes the canonical form (x1, . . . , xn) → (x1, . . . , xn, 0, . . . , 0).

In particular, we get étale coordinates x1|W , . . . , xn+m|W on W , x1|V , . . . , xn|V on V and

may also arrange that IV = (xn+1|W , . . . , xn+m|W ).

In what follows, we often write just xi in place of xi|W or xi|V by abuse of notation.

Let us assume that x1, . . . , xp and xn+1, . . . , xn+q are moving and xp+1, . . . xn and

xn+q+1, . . . , xn+m are fixed by G.

Since the question is local, we may localize at x and assume that V and W = SpecA

are local and the maximal ideal of A is

m = (x1, . . . , xp, xn+1, . . . , xn+q).

Now Ŵ is covered by open affines of the form (for k = 1, . . . , p+ q)

Rnk = SpecA[Tk,1, . . . , Tk,p+q][ξk]/(Tk,k − 1), (4.31)
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where xi = ξkTk,i if i ≤ p, xn−p+i = ξkTk,i if i > p and ξk = 0 is the exceptional divisor in

Rnk . It is easy to see that V̂ is covered by such affines for k ≤ p and in each such we have

that

I
V̂
|Rnk =

(
1

ξk
xn+1, . . . ,

1

ξk
xn+q, xn+q+1, . . . , xn+m

)
= (Tk,p+1, . . . , Tk,p+q, xn+q+1, . . . , xn+m) .

In particular, N
V̂ /Ŵ
|Rnk has a basis of sections given by ∂

∂Tk,p+i
, ∂
∂xn+q+j

.

Since NV/W has a basis by ∂
∂xn+i

, we see that bl(NV/W ) has a basis by ξk
∂

∂xn+i
for

1 ≤ i ≤ q and ∂
∂xn+j

for q + 1 ≤ j ≤ m. But xn+i = ξkTk,p+i implies that 1
ξk
d
Ŵ
xn+i =

d
Ŵ
Tk,p+i

(
mod I

V̂

)
and thus by dualizing ξk

∂
∂xn+i

= ∂
∂Tk,p+i

(
mod I

V̂

)
. We see that the

frames of the two bundles N
V̂ /Ŵ

and bl(NV/W ) match. This concludes the proof.

For the purposes of comparing obstruction theories obtained by embeddings of d-critical

charts and their Kirwan blowups and slices thereof, we introduce the following definition.

Definition 4.3.2. Let U ⊂ V
Φ−→ W be a sequence of G-equivariant embeddings of affine

G-schemes such that U is in standard form for data ΛV = (U, V, FV , ωV , DV , φV ) and

ΛW = (W,FW , ωW , DW , φW ). We say that ωV and ωW are Ω-compatible via Φ if the

following hold:

1. DW pulls back to DV under Φ.

2. The embedding Φ: V → W induces a surjective equivariant morphism ηΦ : FW |V →
FV , compatible with φW |V and φV , such that ηΦ(ωW |V ) is Ω-equivalent to ωV .

3. Let ObW := coker (dWω
∨
W )∨ |U , ObV := coker (dV ω

∨
V )∨ |U . Then ηΦ induces an iso-

morphism

Φck : ObW −→ ObV .

Remark 4.3.3. It makes sense to talk about an induced surjection ηΦ, since the local data we

are considering arise either as the data of an embedding of d-critical charts or are obtained

by such an embedding by performing Kirwan blowups and taking slices. In the former case

ηΦ is just pullback of differential forms and in the latter it is canonically induced starting

from pulling back differential forms and then blowing up or taking slices.
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The motivation behind the above definition is the following lemma.

Lemma 4.3.4. Let (U, V, f, i)
Φ−→ (R,W, g, j) be a G-equivariant embedding of invariant d-

critical charts (see Definition 5.1.5), where V ⊂W as before is a pair of smooth G-schemes.

Then ωg = dg and ωf = df are Ω-compatible.

Proof. ηΦ is pullback of differential forms and ηΦ(ωg|V ) = ωf . Moreover, we have exact

sequences

TW |U
(dWω∨g )

∨

// ΩW |U
ηΦ

��

// ΩU
// 0

TV |U
(dV ω∨f )

∨

// ΩV |U // ΩU
// 0

from which we deduce that coker
(
dWω

∨
g

)∨ |U = coker(dV ω
∨
f )∨|U = ΩU . We obtain an

isomorphism on cokernels induced naturally by ηΦ.

In the rest of this subsection, we consider the following situation:

Notation 4.3.5. Let U ⊂ V
Φ−→ W be a sequence of G-equivariant embeddings of affine

G-schemes such that U is in standard form for data ΛV = (U, V, FV , ωV , DV , φV ) and

ΛW = (U,W,FW , ωW , DW , φW ) and ωV and ωW are Ω-compatible.

We now check that one may compare obstruction theories given by different data of a

local model with Ω-compatible sections.

Lemma 4.3.6. Let ΛV , ΛW be as above. Consider the two complexes EW , EV

(L≥−1
U )∨ −→EW = [TW |U

(dWω∨W )∨

−−−−−−→ FW |U ],

(L≥−1
U )∨ −→EV = [TV |U

(dV ω
∨
V )∨

−−−−−→ FV |U ],

on U . The obstruction theories induced by the dual complexes E∨W , E
∨
V give the same ob-

struction assignments via Φck.

Proof. Suppose we have an infinitesimal lifting problem at a closed point p ∈ U . Let

ρW : I ⊗ FW |p → I ⊗ObW |p and ρV : I ⊗ FV |p → I ⊗ObV |p
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be the induced quotient morphisms. By Lemma 3.1.5, we need to show

Φck
(
ρW (ωW ◦ Φ ◦ g′)

)
= ρV (ωV ◦ g′) (4.32)

Since ηΦ(ωW |V ) and ωV are Ω-equivalent, by Lemma 4.2.7, we may assume that ηΦ(ωW |V ) =

ωV .

Because of ηΦ ◦ ωW ◦ Φ = ωV , Φck ◦ ρW = ρV ◦ ηΦ, and the commutative diagram

∆̄
g′ // V

ωV //

Φ

��

FV
ρV // ObV

∆

g

??OO

W ωW
// FW

ηΦ

OO

ρW
// ObW ,

Φck

OO

(4.32) follows.

We now show that Ω-compatibility is preserved under taking Kirwan blowups and slices

thereof. We begin with a preparatory lemma.

Lemma 4.3.7. Let ΛV , ΛW as above. Then the induced embedding of Kirwan blowups

Φ̂ : V̂ → Ŵ induces a morphism Φ̂ck : Ob
Ŵ
→ Ob

V̂
. The same is true for an étale slice of

a closed point of Û with closed orbit.

Proof. We need to show that η
Φ̂

maps im(d
Ŵ
ω∨
Ŵ

)∨|
Û

to im(d
V̂
ω∨
V̂

)∨|
Û

. Since η
Φ̂

maps

T
V̂
|
Û

into im(d
V̂
ω∨
V̂

)∨|
Û

, it suffices to show that the same is true for N
V̂ /Ŵ
|
Û

, for any local

splitting T
Ŵ
|
V̂

= T
V̂
⊕N

V̂ /Ŵ
.

ηΦ satisfies the same requirement, so by the same reasoning we may find a morphism

α : NV/W |U → TV |U such that the following diagram commutes (for a splitting TW |V =

TV ⊕NV/W )

NV/W |U //

α $$

TW |U
(dWω∨W )∨

// FW |U
ηΦ

��
TV |U

(dV ω
∨
V )∨
// FV |U .

By Lemma 4.2.4 and Lemma 4.3.1, we have that bl(TV ) ⊂ T
V̂

, bl(TW |V ) ⊂ T
Ŵ
|
V̂

and
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bl(NV/W ) = N
V̂ /Ŵ

. We therefore obtain a commutative diagram

N
V̂ /Ŵ
|
Û

//

α̂ %%

bl(TW |U ) // T
Ŵ
|
Û

(d
Ŵ
ω∨
Ŵ

)∨

// F
Ŵ
|
Û

η
Φ̂

��
bl(TV |U ) // T

V̂
|
Û(d

V̂
ω∨
V̂

)∨
// F
V̂
|
Û
,

where the composition N
V̂ /Ŵ
|
Û
→ bl(TW |U ) → T

Ŵ
|
Û

comes from the induced splitting

T
Ŵ
|
V̂

= T
V̂
⊕N

V̂ /Ŵ
and the desired conclusion follows.

Let now S be an étale slice for Ŵ of a closed point x ∈ V̂ Φ−→ Ŵ with stabilizer H and

T = V̂ ∩ S, R = Û ∩ T = Û ∩ S. Then we have induced data ΛT , ΛS of a local model on T

and S (cf. Lemma 4.1.5) respectively such that R is in standard form.

By the definition of ωS , ωT we see that the two horizontal compositions in the diagram

TS |R // T
Ŵ
|R // F

Ŵ
|R //

ηΦ

��

FS |R
ηΨ

��

ρS // ObS

TT |R //

OO

T
V̂
|R //

OO

F
V̂
|R // FT |R

ρT // ObT

equal (dSω
∨
S )∨ and (dTω

∨
T )∨. By Lemma 4.1.8 and an identical argument to Lemma 4.2.6,

in order to show that ηΨ maps the image im(dSω
∨
S )∨|R into im(dTω

∨
T )∨|R we may replace

all bundles by their reduced analogues and get a commutative diagram of sheaves

TS |red
R

// T
Ŵ
|red
R

// F
Ŵ
|red
R

//

ηΦ

��

FS |red
R

ηΨ

��
TT |red

R
//

OO

T
V̂
|red
R

//

OO

F
V̂
|red
R

// FT |red
R

where all horizontal arrows except those in the middle are isomorphisms. It follows imme-

diately that we obtain an induced morphism Ψck : ObS → ObT .

Lemma 4.3.8. Let ΛV , ΛW be as above. Then the induced sections ω
V̂

and ω
Ŵ

(cf.

Lemma 4.1.5) are Ω-compatible.

Proof. By Lemma 4.2.4, it readily follows that conditions (1) and (2) in the definition of

Ω-compatibility hold for the respective Kirwan blowups.
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It remains to check conditions (3). By Lemma 4.3.7, we see that η
Φ̂

induces a morphism

Φ̂ck : Ob
Ŵ
→ Ob

V̂
. Moreover, since η

Φ̂
is surjective, Φ̂ck is surjective. We need to check

that it is an isomorphism.

T
Ŵ
|
Û

(d
Ŵ
ω∨
Ŵ

)∨

// F
Ŵ
|
Û

η
Φ̂

��

ρW // Ob
Ŵ

Φ̂ck

��

// 0

T
V̂
|
Û(d

V̂
ω∨
V̂

)∨
// F
V̂
|
Û

ρV // Ob
V̂

// 0.

(4.33)

Consider a morphism ∆ → Û , where ∆ is the spectrum of a local Artinian ring. We will

show that `(Ob
Ŵ
|∆) = `(Ob

V̂
|∆). Since length is additive in exact sequences, we have

`(Ob
Ŵ
|∆) = `(F

Ŵ
|∆)− `(ker ρW |∆) (4.34)

We have an exact sequence

T
Ŵ
|∆

(d
Ŵ
ω∨
Ŵ

)∨|∆
−−−−−−−−→ F

Ŵ
|∆

ρW |∆−−−→ Ob
Ŵ
|∆ −→ 0.

Thus ker ρW |∆ = im(d
Ŵ
ω∨
Ŵ

)∨|∆ and it follows that

`(ker ρW |∆) = `(im(d
Ŵ
ω∨
Ŵ

)∨|∆) = `(T
Ŵ
|∆)− `(ker(d

Ŵ
ω∨
Ŵ

)∨|∆) (4.35)

Notice now that

ker(d
Ŵ
ω∨
Ŵ

)∨|∆ = coker
(
d
Ŵ
ω∨
Ŵ
|∆
)∨

= Ω
Û
|∨∆ (4.36)

Therefore combining (4.34), (4.35) and (4.36) we get, since F
Ŵ

and T
Ŵ

have the same rank,

`(Ob
Ŵ
|∆) = `(Ω

Û
|∨∆).

An identical argument shows that `(Ob
V̂
|∆) = `(Ω

Û
|∨∆).

Since `(Ob
Ŵ
|∆) = `(Ob

V̂
|∆) for all such ∆→ Û and Φ̂ck is surjective, we conclude that

Φ̂ck is an isomorphism.

Remark 4.3.9. It might seem counterintuitive that there is an induced map Φ̂ck, given that

in the diagram (4.33) the derivative arrow T
V̂
|
Û
→ T

Ŵ
|
Û

goes “the wrong way”. However,

the fact that we begin with d-critical charts and then perform Kirwan blowups allows us to
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show that this is possible. The corresponding situation for taking étale slices also owes to

the special properties of Kirwan blowups.

Moreover, the isomorphism property of Φ̂ck depends crucially on the fact that the 2-term

complexes in question induce perfect obstruction theories on Û . This enables us to show

that the kernels of (d
Ŵ
ω∨
Ŵ

)∨|∆ and (d
V̂
ω∨
V̂

)∨|∆ are the same and hence obtain an equality

of lengths.

Lemma 4.3.10. Let ΛV , ΛW be as above. Let S be an étale slice for Ŵ of a closed point

x ∈ V̂ Φ−→ Ŵ with stabilizer H and T = V̂ ∩ S, R = Û ∩ T = Û ∩ S. Then we have induced

data ΛT , ΛS of a local model on T and S (cf. Lemma 4.1.5) respectively such that R is in

standard form and ωT and ωS are Ω-compatible.

Proof. By Lemma 4.2.6, ηΨ(ωS |T ) and ωT are Ω-equivalent, since ηΦ(ω
Ŵ
|
V̂

) and ω
V̂

are.

Thus, by Lemma 4.3.7, conditions (1) and (2) of the definition of Ω-compatibility hold.

Condition (3) follows by an identical argument involving lengths as in the previous lemma.

The induced map Φck is independent of the particular choice of embedding Φ.

Lemma 4.3.11. Let U ⊂ V Φ,Ψ−−→W be G-equivariant embeddings of affine G-schemes such

that U is in standard form for data ΛV and ΛW , ωV and ηΦ(ωW |V ) are Ω-equivalent, ωV

and ηΨ(ωW |V ) are Ω-equivalent and the diagram

U //

  

V

Φ,Ψ

��
W

commutes. If Φck = Ψck, then the induced morphisms on the Kirwan blowups satisfy Φ̂ck =

Ψ̂ck. The same holds if we take slices of these blowups.

Furthermore, if ΛV and ΛW are data of d-critical charts for U , then we indeed have

Φck = Ψck for any two choices of embedding V →W .

Proof. It suffices to show that if ηΦ−ηΨ maps FW |U to im(dV ω
∨
V )∨|U then the same is true

for Φ̂− Ψ̂. Let us denote α = ηΦ − ηΨ for brevity.

Since α|U maps FW |U to im(dV ω
∨
V )∨|U , it follows that α factors as

FW |U
β−→ TV |U

(dV ω
∨
V )∨

−−−−−→ FV |U .
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Similarly to Lemma 4.3.7, we obtain a commutative diagram

F
Ŵ
|
Û

α̂ //

β̂ ##

F
V̂
|
Û

γ // π∗FV |Û

T
V̂
|
Û dπ

// π∗TV |Û .

π∗(dV ω
∨
V )∨

OO

Hence γ ◦ α̂ = π∗(dV ω
∨
V )∨ ◦ dπ ◦ β̂ = γ ◦ (d

V̂
ω∨
V̂

)∨ ◦ β̂ on Û , from which we deduce that

γ ◦
(
α̂− (d

V̂
ω∨
V̂

)∨ ◦ β̂
)
∈ π∗IU · π∗FV , which in turn yields that α̂− (d

V̂
ω∨
V̂

)∨ ◦ β̂ ∈ I
Û
· F

V̂

and therefore α̂|
Û

= (d
V̂
ω∨
V̂

)∨|
Û
◦ β̂|

Û
, which implies what we want.

The proof for slices proceeds along the same lines of Lemma 4.2.6 and Lemma 4.3.7 and

we omit it.

Finally if the two sets of data give d-critical charts of U , we have Φ∗ − Ψ∗ : OW →
imω∨V ⊂ OV for the map on coordinate rings and therefore by symmetry ηΦ−ηΨ : ΩW |U →
im (dV ω

∨
V ) |U = im (dV ω

∨
V )∨ |U ⊂ ΩV |U , which implies the desired equality Φck = Ψck.

The following lemma asserts that taking a slice gives compatible reduced obstruction

sheaves and assignments and concludes this section.

Lemma 4.3.12. Let (U, V, FV , ωV , DV , φV ) be the data of a local model on V . Let Φ: S →
V be an étale slice of a closed point of V with closed G-orbit and stabilizer H and (T, S, FS , ωS , DS , φS)

be the induced data on S.

Consider the diagram

KV |T [g // TV |T
(dV ω

∨
V )∨
// FV |T //

��

g∨(−DS)]

��
KS [h

OO

// TS |T
(dSω

∨
S )∨
//

OO

FS |T // h∨(−DS)]

(4.37)

The surjection ηΦ : FV |S → FS induces an isomorphism Φb : H1(KV |T )→ H1(KS) which re-

stricts to an isomorphism Obred
V |T s → Obred

S , via which the dual complexes
(
Kred
V |T

)∨
,
(
Kred
S

)∨
give the same obstruction assignments on T .
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Proof. We have a commutative diagram of short exact sequences

0 // h //

��

g //

��

g/h // 0

0 // TS |T // TV |T // g/h // 0

inducing an isomorphism TS |red
T → TV |red

T .

By the definition of FS , we have a diagram of short exact sequences

0 // (g/h)∨(−DT ) // FV |T //

��

FS |T //

��

0

0 // (g/h)∨(−DT ) // g∨(−DT ) // h∨(−DT ) // 0

and similarly we deduce that FV |red
T → FS |red

T is an isomorphism. Then the central square

of (4.37) factors through the commutative diagram

TV |red
T

// FV |red
T

��
TS |red

T

OO

// FS |red
T ,

where the vertical arrows are isomorphisms. We obtain an induced isomorphismH1(KV |T )→
H1(KS) restricting to an isomorphism Obred

V |T s → Obred
S by (4.8) and the obstruction as-

signments of the reduced complexes must match by standard arguments as in the proof of

Proposition 4.3.6.

Remark 4.3.13. All of the above results on Ω-compatibility are true if one replaces locally

closed embeddings Φ: V → W by unramified morphisms and Zariski open embeddings by

étale maps. This is because for our purposes it suffices to work étale locally and then Zariski

open maps correspond to étale maps and locally closed embeddings to unramified morphisms.

We will tacitly use this observation in the following chapters and sections of the thesis.

One may alternatively choose to work in the complex analytic topology where everything

works verbatim.



Chapter 5

(−1)-shifted Symplectic Stacks and

their Truncations

5.1 D-critical loci

In this section, we recall Joyce’s theory of d-critical loci, as developed in [Joy15], and

establish some notation.

We comment that there is also a parallel theory of critical virtual manifolds, developed

in [KL12], which is equivalent to the theory of d-critical loci for the cases considered here

and could alternatively be used as well.

5.1.1 D-critical schemes

We begin by defining the notion of a d-critical chart.

Definition 5.1.1. (d-critical chart) A d-critical chart for M is the data of (U, V, f, i) such

that: U ⊆ M is Zariski open, V is a smooth scheme, f : V → A1 is a regular function on

V and U
i−→ V is an embedding so that U = (dV f = 0) = Crit(f) ⊆ V .

If x ∈ U , then we say that the d-critical chart (U, V, f, i) is centered at x.

Joyce defines a canonical sheaf SM of C-vector spaces with the property that for any

Zariski open U ⊆M and an embedding U ↪→ V into a smooth scheme V with ideal I, SM
fits into an exact sequence

0 −→ SM |U −→ OV /I2 dV−→ Ω1
V /I · Ω1

V . (5.1)

58
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Example 5.1.2. For a d-critical chart (U, V, f, i) of M , the element f + I2 ∈ Γ(V,OV /I2)

gives a section of SM |U .

Definition 5.1.3. (d-critical scheme) A d-critical structure on a scheme M is a section

s ∈ Γ(M,SM ) such that M admits a cover by d-critical charts (U, V, f, i) and s|U is given

by f + I2 as above on each such chart. We refer to the pair (M, s) as a d-critical scheme.

For a d-critical scheme M and a Zariski open U ⊆ M , any embedding U ↪→ V into a

smooth scheme can be locally made into a d-critical chart.

Proposition 5.1.4. [Joy15, Proposition 2.7] Let M be a d-critical scheme, U ⊆M Zariski

open and i : U ↪→ V a closed embedding into a smooth scheme V . Then for any x ∈ U ,

there exist Zariski open x ∈ U ′ ⊆ U , i(U ′) ⊆ V ′ ⊆ V and a regular function f ′ : V ′ → A1

such that (U ′, V ′, f ′, i|U ′) is a d-critical chart centered at x.

In order to compare different d-critical charts, we need the notion of an embedding.

Definition 5.1.5. Let (U, V, f, i) and (R,W, g, j) be two d-critical charts for a d-critical

scheme (M, s) with U ⊆ R Zariski open. We call a locally closed embedding Φ : V →W an

embedding between the two charts if f = g◦Φ: V → A1 and the following diagram commutes

U
i //

��

V

Φ
��

R
j //W

By abuse of notation, we use Φ : (U, V, f, i)→ (R,W, g, j) to denote this data.

We then have the following way to compare different overlapping d-critical charts.

Proposition 5.1.6. [Joy15, Theorem 2.20] Let (U, V, f, i) and (S,W, g, j) be two d-critical

charts centered at x for a d-critical scheme (M, s). Then, after possibly (Zariski) shrinking

V and W around x, there exists a d-critical chart (T,Z, h, k) centered at x and embeddings

Φ : (U, V, f, i)→ (T,Z, h, k), Ψ : (R,W, g, j)→ (T,Z, h, k).

5.1.2 Equivariant d-critical loci

For our purposes, we need equivariant analogues of the results of Section 5.1.1. The

theory works in parallel as before (cf. [Joy15, Section 2.6]).
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Definition 5.1.7. (Good action) Let G be an algebraic group acting on a scheme M . We

say that the action is good if M has a cover {Uα}α∈A where every Uα ⊆M is an invariant

open affine subscheme of M .

Remark 5.1.8. If M is obtained by GIT so that it is the semistable locus of a projective

scheme with a linearized G-action, then the action of G on M is good.

It is straightforward to extend Definitions 2.1, 2.2 and 2.3 and Proposition 5.1.4 in the

equivariant setting (cf. [Joy15, Definition 2.40]).

Proposition 5.1.9. [Joy15, Remark 2.47] Let G be a complex reductive group with a good

action on a scheme M . Suppose that (M, s) is an invariant d-critical scheme. Then the

following hold:

1. For any x ∈M fixed by G, there exists an invariant d-critical chart (U, V, f, i) centered

at x, i.e. an invariant open affine U 3 x, a smooth scheme V with a G-action, an

invariant regular function f : V → A1 and an equivariant embedding i : U → V so that

U = Crit(f) ⊆ V .

2. Let (U, V, f, i) and (S,W, g, j) be two invariant d-critical charts centered at the fixed

point x ∈ M . Then, after possibly shrinking V and W around x, there exists an

invariant d-critical chart (T,Z, h, k) centered at x and equivariant embeddings Φ :

(U, V, f, i)→ (T,Z, h, k), Ψ : (S,W, g, j)→ (T,Z, h, k).

Remark 5.1.10. If G is a torus (C∗)k, then Proposition 5.1.9 is true without the assump-

tion that x is a fixed point of G.

Remark 5.1.11. There is a notion of d-critical locus for Artin stacks M (cf. [Joy15,

Section 2.8]). Then (cf. [Joy15, Example 2.55]) d-critical structures on quotient stacks

[M/G] are in bijective correspondence with invariant d-critical structures on M .

Moreover, one may pull back d-critical structures along smooth morphisms between

stacks.

5.2 (−1)-shifted symplectic stacks

In what follows, we assume that C = SpecS is a smooth affine curve over C. Whenever

we refer to a reductive group, we assume that it acts trivially on C. All cotangent complexes

and Kähler differentials will be relative to C, unless noted otherwise.
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5.2.1 Derived algebraic geometry: introduction and local model

In this subsection, we give a very brief introduction on derived algebraic geometry, as

developed by Toën-Vezzosi and Lurie. Since we will be interested mostly in local calcula-

tions, we focus on the local picture. Results and properties that are quoted here can be

found in the exposition of [BBJ13, Sections 2,3].

In classical algebraic geometry, the fundamental building blocks are affine schemes

SpecR, where R is a commutative S-algebra. In derived algebraic geometry, we con-

sider commutative differential graded algebras (A•, δ) (cdga’s) over S, which are negatively

graded. A cdga (A•, δ) gives rise to the affine derived scheme SpecA• with underlying

classical truncation the affine scheme t0(SpecA•) = SpecA• = SpecH0(A•). SpecA• and

SpecA• have the same underlying topological space, but different rings of functions.

This analogy may be continued to define derived schemes and stacks. Derived Artin

stacks are ∞-functors

MMM : {commutative differential graded S-algebras} −→ {simplicial sets}

satisying certain conditions. MMM is an affine derived scheme if it is equivalent to SpecA•

and a derived scheme if it has a Zariski open cover by affine derived schemes. As in the case

of affine derived schemes, MMM has a classical truncation t0(MMM) = M, which is a classical

Artin stack. The categories of classical schemes and Artin stacks embed fully faithfully into

the category of derived Artin stacks.

Notions from classical algebraic geometry naturally translate into derived algebraic ge-

ometry. In particular, there is a notion of derived cotangent complex, sharing similar

properties with the classical cotangent complex, which is moreover preserved under base

change.

We wish to work with the following local model.

Definition 5.2.1. (Standard form cdga) We say that a cdga (A•, δ) is of standard form if

A0 is a smooth S-algebra and, as a graded algebra, it is freely generated over A0 by finitely

many generators in each negative degree (i.e. it is quasifree).

If A• is of standard form, then its derived cotangent complex LA• is represented by the

Kähler differentials together with the internal differential (ΩA• , δ). We also have the usual

de Rham differential d on ΩA• , so that we obtain a mixed complex. Moreover, LA•⊗H0(A•)

is a complex of free H0(A•)-modules.
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Definition 5.2.2. (Minimality) Let (A•, δ) be of standard form and x ∈ SpecA•. We say

that A• is minimal at x if all the differentials in LA• |x are zero.

If G is a reductive group acting on (A•, δ) (and by our convention trivially on C), then

we have analogous equivariant statements. We will consider minimality at x only when x

is fixed by G.

The next theorem shows that every derived scheme can be locally modelled by a minimal

cdga of standard form.

Theorem 5.2.3. [BBJ13, Theorem 4.1] Let XXX be a derived locally finitely presented C-

scheme and x ∈ XXX. Then there exists a Zariski open inclusion SpecA• → XXX, mapping

p ∈ SpecA• to x, where A• is a cdga of standard form which is minimal at p.

5.2.2 (−1)-shifted symplectic structures

We proceed to give a brief account of (−1)-shifted symplectic forms on an affine derived

scheme SpecA•, introduced in [PTVV13].

Definition 5.2.4. ((−1)-shifted symplectic form) We say that ωωω = (ω0, ω1, ...) is a (−1)-

shifted symplectic form on SpecA• if ωi ∈
(
∧2+iΩA•

)−1−i
such that

1. ω0 gives a quasi-isomorphism LA• → TA• [1],

2. δω0 = 0 and dωi + δωi+1 = 0 for i ≥ 0.

We refer to condition (1) as the non-degeneracy property and condition (2) as the closedness

property.

Two forms ωωω,ω′ω′ω′ are equivalent if there exist αi ∈
(
∧2+iΩA•

)−2−i
such that ω0−ω′0 = δα0

and for all i ≥ 0, ωi+1 − ω′i+1 = dαi + δαi+1.

A (−1)-shifted symplectic form can be defined on a derived Artin stack by smooth

descent. Suppose now that the derived quotient stack [SpecA•/G] has a (−1)-shifted

symplectic form ωωω, where A• is in standard form and minimal at a fixed point x. Then ω0

induces a quasi-isomorphism

L[SpecA•/G]|H0(A•) → T[SpecA•/G]|H0(A•)[1].
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This implies that LA• must have Tor-amplitude [−2, 0] and therefore A• is freely gener-

ated over A0 in degrees −1 and −2 by generators yj ∈ A−1 and wk ∈ A−2 respectively. We

may write the above quasi-isomorphism as the following equivariant morphism of complexes

V −2 //

��

V −1 //

��

ΩA0

��

// g∨

��
g // TA0 // (V −1)∨ // (V −2)∨.

(5.2)

Since A• is minimal at the fixed point x, we may localize G-invariantly around x and

assume that the vertical arrows are isomorphisms. In particular, we obtain an isomorphism

V −1 ' TA0 . Let xi be a set of étale coordinates for A0. We may now choose generators

yi ∈ A−1 such that dyi ∈ V −1 are the dual basis to dxi ∈ ΩA0 under this isomorphism.

We may thus identify A−1 and TA0 as A0-modules. Therefore the differential δ : TA0 → A0

induces an invariant section ω of ΩA0 whose zero locus is precisely SpecH0(A•).

Definition 5.2.5. (Special cdga) We say that a cdga (A•, δ) with a G-action, minimal at

a fixed point x of G, is special if it is freely generated over A0 in degrees −1 and −2 by

generators yi and wj respectively, together with an identification A−1 = V −1 (where V −1 is

as in (5.2)) mapping yi to dyi.

We denote U = SpecH0(A•) and V = SpecA0.

By Theorem 5.2.3, every finitely presented affine derived scheme is (up to Zariski shrink-

ing) equivalent to SpecA• with A• a standard form cdga and this is also true in the equiv-

ariant setting around a fixed point x of G. For more details, we refer to the proof of [BBJ13,

Theorem 4.1], which is valid in the equivariant setting as well. We deduce the following

proposition.

Proposition 5.2.6. Let U be an affine G-scheme over C, which is the classical scheme

associated to a derived affine G-scheme U such that the stack [U/G] is (−1)-shifted sym-

plectic with form ωωω. Moreover, let x ∈ U be a fixed point of G. Then, up to equivariant

Zariski shrinking, U is equivalent to SpecA•, where (A•, δ) is a special cdga, minimal at x.

In particular, there exists a smooth affine G-scheme V → C, a G-equivariant embedding

U → V over C minimal at x and an induced invariant 1-form ω ∈ H0(ΩV/C) such that

U = Z(ω) ⊂ V is the zero locus of ω.

We can use the above to understand the local structure of quotient stacks that arise as
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the truncation of (−1)-shifted symplectic derived stacks. The following proposition can be

deduced by work of Halpern-Leistner1 [HL].

Proposition 5.2.7. Let MMM→ C be a (−1)-shifted symplectic derived stack whose trunca-

tionM = [X/G]→ C is a quotient stack such that the action of G on X is good (and trivial

on C). Let x ∈ M be a closed point with reductive stabilizer R. Then there exists an étale

morphism fff : [TTT/R] →MMM, a point t ∈ [TTT/R] fixed by R, where TTT is equivalent to SpecA•

with (A•, δ) a special cdga, minimal at t, mapping t to x and inducing the inclusion R ⊂ G
on stabilizer groups.

At the classical level, we get an étale morphism f : [T/R]→M. There exists a smooth

affine R-scheme S → C, a G-equivariant embedding T → S over C minimal at t and an

induced invariant 1-form ω ∈ H0(ΩS/C) such that T = Z(ω) ⊂ S is the zero locus of ω.

Proof. Let x ∈ U be a G-invariant affine open in X (such exists since the G-action on X

is good). Since U is affine and G is reductive, by [HL, Lemma 2.4], there exists an affine

derived G-scheme UUU = SpecB• such that we have a fiber diagram

[U/G] //

��

M

��
[UUU/G] //MMM.

Let V = SpecB0. By Luna’s étale slice theorem, we may pick an affine slice x ∈ S in V

and obtain an étale map [T/R] → [U/G], where T = U ∩ S, induced from the étale map

[S/R] → [V/G]. Using S → V , there exists a derived affine scheme TTT = SpecC• with an

R-action and C0 = B0, whose classical truncation is T , fitting in a fiber diagram

[T/R] //

��

[U/G]

��
[TTT/R] // [UUU/G].

where the lower horizontal arrow is étale. Therefore [TTT/R] is (−1)-shifted symplectic and

we may apply Proposition 5.2.6 to deduce that TTT is equivalent to SpecA•, where (A•, δ) is

special and minimal at t.

1At the time of writing of this thesis, it is available online at http://www.math.columbia.edu/~danhl/
derived_equivalences_2016_09_18.pdf.

http://www.math.columbia.edu/~danhl/derived_equivalences_2016_09_18.pdf
http://www.math.columbia.edu/~danhl/derived_equivalences_2016_09_18.pdf
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Remark 5.2.8. One of the main results of [BBJ13] is that, in the absolute case, if A• is

a standard form C-cdga with a (−1)-shifted symplectic form ωωω, then up to equivalence and

possible shrinking we have ωωω = (ω0, 0, 0, . . . ), where ω0 = dφ and δφ = dΦ for φ ∈ (Ω•A)−1

and Φ ∈ A0. In particular, this implies that SpecH0(A•) is the critical locus of Φ inside

SpecA0. This also works equivariantly as in the above.

In [BBBBJ15], it is shown that the classical truncation of a (−1)-shifted symplectic Artin

stack inherits a d-critical structure. Thus one gets a truncation functor from (−1)-shifted

symplectic derived Artin stacks to d-critical Artin stacks.

5.2.3 Comparison of local presentations

We first examine how the 1-form ω changes if one moves ωωω within its equivalence class.

Proposition 5.2.9. Let (A•, δ) be a special cdga, minimal at x. Suppose that ωωω,ηηη are

equivalent (−1)-shifted symplectic forms on [SpecA•/G]. Then, up to equivariant shrinking

of V around x, these induce 1-forms ω, η ∈ H0(ΩV/C) which are Ω-equivalent, meaning that:

1. We have an equality of ideals in A0, (ω) = (η) = IU .

2. There exist equivariant morphisms B,C : ΩV/C → TV/C such that

ω∨ − η∨ = η∨B∨dη∨
(
mod I2

U

)
and

η∨ − ω∨ = ω∨C∨dω∨
(
mod I2

U

)
.

Proof. Let xi be an étale basis for V over C. As in the discussion preceding Definition 5.2.5,

we may write ω0 =
∑

i dy
ω
i dxi and η0 =

∑
i dy

η
i dxi, where yωi and yηi are bases for A−1, for

the 0-part of the pullbacks of ωωω and ηηη to SpecA•. Thus we have

yωi =
∑
k

Jωikyk, y
η
i =

∑
k

Jηikyk, J
ω
ik, J

η
ik ∈ A

0
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The induced 1-forms are then given by

ω =
∑
i

δyωi dxi =
∑
i,k

Jωikskdxi, (5.3)

η =
∑
i

δyηi dxi =
∑
i,k

Jηikskdxi,

where we write si = δyi for convenience. Since yi, y
ω
i , y

η
i are all bases for A−1 it is clear that

IU = (δyi) = (δyωi ) = (δyηi ), which proves (1).

Let δwj =
∑

iWjiyi, where Wji ∈ A0. Since δ2(wj) = 0 we have

∑
i,j

Wjisi = 0 (5.4)

Now ωωω,ηηη are equivalent as symplectic forms so in particular we have ω0 − η0 = δα0 for

some α0 ∈
(
∧2ΩA•

)−2
. By degree considerations, we may write

α0 =
∑
ij

Eijdyidyj +
∑
ik

Fikdwkdxi + α′0, Eij , Fik ∈ A0,

where α′0 is a 2-form, whose every term is divisible by some of the yi, and we may assume

without loss of generality that Eij is symmetric. Thus δα′0 ∈ IU ·
(
∧2Ω1

A•
)−1

and we have

δα0 = −2
∑
i,j

Eijdsidyj −
∑
i,k

Fikd(δwk)dxi (mod IU )

= −2
∑
i,j

Eijdsidyj −
∑
i,j,k

FikWkjdxidyj (mod IU ) .

We have also

ω0 − η0 =
∑
i

dyωi dxi −
∑
i

dyηi dxi

=
∑
i,k

dJωikykdxi −
∑
i,k

Jωikdykdxi −
∑
i,k

dJηikykdxi +
∑
i,k

Jηikdykdxi.

By comparing the coefficients of each dyj , we obtain a relation

∑
i

Jωijdxi −
∑
i

Jηijdxi = 2
∑
i

Eijdsi +
∑
i,k

FikWkjdxi (mod IU )
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for each index j. Then, using (5.3),

ω − η =
∑
i,k

(Jωikdxi − J
η
ikdxi)sk (5.5)

= 2
∑
i,k

Eikdsi sk +
∑
i,k,j

FijWjkskdxi
(
mod I2

U

)
= 2

∑
i,k

Eikdsi sk
(
mod I2

U

)
,

where in the second expression the second term is zero using (5.4).

Note that in order to derive (5.5), we only used the fact that yi is a basis for A−1. So

we could repeat the exact same analysis and obtain a similar equation with si replaced by

sωi = δyωi or sηi = δyηi and Eik by Eωik or Eηik respectively. It is then easy to see that these

exactly imply (2), with the coefficients of B,C being determined by Eωik, E
η
ik after averaging

over G to make the morphism equivariant (ω − η is already invariant).

Suppose now that we have étale morphisms fffα : [TTTα/Rα]→MMM and fffβ : [TTT β/Rβ]→MMM
as in Proposition 5.2.7, where TTTα is equivalent to SpecA• and TTT β is equivalent to SpecB•,

with A•, B• special equivariant cdgas. Let z ∈ [TTTα/Rα]×MMM [TTT β/Rβ] be a closed point with

stabilizer H.

Note that fffα, fffβ are also affine. Then, since Tα, Tβ → M are affine, the diagonal

of M is affine, and a derived scheme is affine if and only if its truncation is affine, we

obtain that TTTα ×MMM TTT β is an affine derived scheme with an action of Rα × Rβ such that

[TTTα ×MMM TTT β/Rα × Rβ] is (−1)-shifted symplectic. Then, there exists a special cdga C•

with an H-action, minimal at tαβ, such that we have H-equivariant morphisms α : A• →
C•, β : B• → C• and a commutative diagram of étale arrows

[SpecC•/H]

θαθαθα
��

θβθβθβ // [SpecB•/Rβ]

fffβ
��

[SpecA•/Rα]
fffα

//MMM.

(5.6)

Moreover, the morphism [SpecC•/H]→ [TTTα ×MMM TTT β/Rα ×Rβ] is étale and maps tαβ to z.

We can recast the above data at the level of classical stacks and schemes. We have an

étale map fα : [Tα/Rα]→M, where Tα ⊂ Sα is the zero locus of an invariant section ωα of

ΩSα/C and Sα → C is smooth, Rα-equivariant. Similar data is obtained for the étale map
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[Tβ/Rβ]→M. The above diagram shows that we have the following comparison data:

1. We have an affine, smooth H-scheme Sαβ → C with an invariant section ωαβ of ΩSαβ/C

with zero locus Tαβ, minimal at a point tαβ fixed by H. Here Tαβ is the truncation

of the derived scheme SpecC•.

2. There exist H-equivariant unramified morphisms θα : Sαβ → Sα and θβ : Sαβ → Sβ,

inducing unramified morphisms Tαβ → Tα and Tαβ → Tβ.

3. ηθα(ωα), ηθβ (ωβ) are Ω-equivalent to ωαβ.

4. We have a commutative diagram with étale arrows

[Tαβ/H]

θα
��

θβ // [Tβ/Rβ]

fβ
��

[Tα/Rα]
fα

//M.

(5.7)

Definition 5.2.10. (Common roof) If the above four conditions hold, coming from a dia-

gram (5.6), we say that the quasi-critical chart ΛSαβ is a common roof for the quasi-critical

charts ΛSα and ΛSβ . More generally, the same definition applies to any two relative local

models which are not necessarily quasi-critical charts.

Remark 5.2.11. Suppose that we have a common roof coming from a commutative diagram

(5.6) where MMM = [SpecD•/G] and Rα = Rβ = H. Moreover, assume that we have two

compositions gα : D• → A• → C• and gβ : D• → B• → C• such that Spec gα, Spec gβ

become equivalent when composed with the quotient morphism SpecD• → [SpecD•/G] and

induce the diagram (5.6). If gα, gβ : D0 → C0 are the induced morphisms and we denote

V = SpecD0,

gbα = θbα ◦ f bα, gbβ = θbβ ◦ f bβ : Obred
V |T sαβ −→ Ob

red
Sαβ

are obtained by the corresponding maps from (5.6) on cotangent complexes of quotient stacks,

as in Lemma 4.3.12. It follows that for the (non-commutative) diagram of quotient stacks

[SpecC0/H]

θα
��

θβ // [SpecB0/H]

fβ
��

[SpecA0/H]
fα
// [SpecD0/G].
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which is compatible with (5.7), there is a natural equivalence between the compositions θbα◦f bα
and θbβ ◦ f bβ, which is also compatible with the commutativity of (5.7).

Another way to see this more concretely is when G is a Zariski open subscheme of

an affine space. This is the case in our application to Donaldson-Thomas invariants, since

closed points correspond to polystable sheaves whose stabilizers are products of general linear

groups. The fact that gα, gβ composed with SpecD• → [SpecD•/G] are equivalent implies

then that there exists a morphism hhh = Spech : SpecC• → G such that the composition

Spec g′β : SpecC•
(id,hhh)−−−→ SpecC• ×G

(Spec gβ ,id)
−−−−−−−→ SpecD• ×G −→ SpecD•,

where the last arrow is given by the group action, gives a map of cdgas D• → C• which is

homotopic to gβ. In particular, the induced morphisms gβ : D0 → C0 and g′β : D0 → C0

satisfy gβ − g′β : D0 → imC−1 = imω∨αβ and thus, as in Lemma 4.3.11, we get that

gbβ = (g′β)b : Obred
V |T sαβ −→ Ob

red
Sαβ

and the induced morphism h : SpecC0 → G gives the data for the equivalence mentioned

above.



Chapter 6

Generalized Donaldson-Thomas

Invariants

This chapter leads up to the main result of this thesis, the construction of the generalized

DT invariant via Kirwan blowups. We treat the cases of moduli stacks of semistable sheaves

and semistable perfect complexes.

6.1 The case of sheaves

For background on Gieseker stability of sheaves, we refer the reader to [HL10].

6.1.1 Obstruction theory of Kirwan partial desingularization of equivari-

ant d-critical loci

As in (2.1), let M = [X/G] be a quotient stack obtained by GIT. We have therefore

equivariant embeddings X ⊂ P ⊂ (PN )ss with G acting on PN via a homomorphism

G→ GL(N + 1).

Suppose also that M admits a d-critical structure s ∈ Γ(M,SM) so that (M, s) is a

d-critical stack. By Remark 5.1.11 this is equivalent to a G-invariant d-critical structure on

X.

In this section, we carefully follow the steps of Chapter 2 tailored to the case of a d-

critical locus to show that the Kirwan partial desingularization M̃ admits a semi-perfect

obstruction theory.

70
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Let R(X) = {R1, ..., Rm, {1}} in order of decreasing dimension.

Let x ∈ X be a closed point with closed G-orbit, fixed by R1. Since the action of G is

good, we have a G-invariant affine open x ∈ U ⊂ X. Therefore, we may apply the étale

slice theorem [Dré04, Theorem 5.3] to get a locally closed affine x ∈ T ⊂ U such that

[T/R1]→ [U/G] ⊂ [X/G] is étale. We thus obtain an étale cover

∐
[T 1
α/R1]

∐
[(X −GZR1)/G] −→ [X/G] =M,

where each T 1
α is an R1-invariant d-critical locus. In particular, for each α there exist data

of a local model (T 1
α, S

1
α,Ω

1
S1
α
, dfα, 0, σS1

α
) with T 1

α = (dfα = 0) ⊂ S1
α in standard form and

we may take S1
α to be affine, locally closed in P .

Let X1 = X̂ be the Kirwan blowup of X1 associated with R1 and set X◦1 = X −GZR1 .

Then we obtain an induced étale cover

∐
[T̂ 1
α/R1]

∐
[Xo

1/G] −→ [X1/G] =M1 ⊂ P1 := [P1/G].

For each α, we have induced data (T̂ 1
α, Ŝ

1
α, FŜ1

α
, ω

Ŝ1
α
, D

Ŝ1
α
, φ

Ŝ1
α
) with T̂ 1

α = (ω
Ŝ1
α

= 0) ⊂ Ŝ1
α ⊂

P̂ =: P1. Note also that [X◦1/G] −→M1 factors through M as an open immersion.

Now R2 ∈ R(X1) is of maximal dimension. Let x ∈ X1 be a closed point with closed

G-orbit, fixed by R2. Then its orbit will lie in Xo
1 or it will be contained in the image of

some [T̂ 1
α/R1]. Applying the same reasoning, we get an induced étale cover

∐
[T̂ 2
β/R2]

∐
[(T̂ 1

α)◦/R1]
∐

[X◦2/G] −→ [X2/G] =M2 ⊂ P2 := [P2/G],

where (T̂ 1
α)◦ = T̂ 1

α − T̂ 1
α ∩GZR2 , X

◦
2 = X◦1 −GZR2 and the various T 2

β ⊂ S2
β are étale slices

of G×R1 T̂
1
α or X◦1 in standard form, where we may take S2

β to be slices in P2 = P̂1.

Continuing inductively, we have for any n an étale cover

∐
[T̂nγ /Rn]

∐
· · ·
∐

[(T̂ 1
α)◦/R1]

∐
[X◦n/G]→Mn ⊂ Pn := [Pn/G],

where by abuse of notation we write

(T̂ iα)◦ = T̂ iα −GZRi+1 ∩ T̂ iα − ...−GZRn ∩ T̂ iα

and so on, and the Tnα are appropriate slices of the elements of the étale cover for Mn−1.
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Note also that for each i, [(T̂ iα)◦/Ri] factors through an étale morphism to Mi.

We see that M̃ = Mm = [Xm/G] ⊂ [Pm/G], a DM stack, is the Kirwan partial

desingularization of M. We formalize the above procedure in the following proposition,

where we also keep track of obstruction sheaves and their comparison data.

Lemma 6.1.1. For each n ≥ 0, let EXn , EPn be the union of all exceptional divisors in

Mn and Pn respectively. There exist collections of étale morphisms [Tα/Rα] → Mn and

[Sα/Rα]→ Pn such that:

1. For each α, Rα ∈ {R1, ..., Rn}.

2. Each Tα is in standard form for data (Tα, Sα, FSα , ωSα , DSα , φSα) of a local model on

a smooth affine Rα-scheme Sα ⊂ Pn.

3. The collections cover EXn and EPn respectively.

4. The identity components of stabilizers that occur in Mn lie, up to conjugacy, in the

set {Rn+1, ..., Rm}.

5. The data (Tα, Sα, FSα , ωSα , DSα , φSα) restricted to the complement of EPn ⊂ Pn are

the same as those of a d-critical chart on Tα.

6. For α, β and q ∈ [Tα/Rα]×Mn [Tβ/Rβ] whose stabilizer has identity component conju-

gate to Rq, there exist an affine Tαβ in standard form for data (Tαβ, Sαβ, Fαβ, ωαβ, Dαβ, φαβ)

of a local model and an equivariant commutative diagram

Tαβ //

iα

}}

Sαβ

θβ ""θα}}

Tαβoo

iβ

!!
Tα //

!!

Sα

""

Sβ

||

Tβoo

}}
Mn

// Pn Mn,oo

(6.1)

inducing a commutative diagram consisting of étale maps on the corresponding quo-

tient stacks for arrows pointing downwards. Tαβ, Sαβ are étale slices for both Tα, Tβ

and Sα, Sβ respectively. All horizontal arrows are embeddings and θα, θβ are unrami-

fied and Rq-equivariant. ηθα(ωSα) and ηθβ (ωSβ ) are Ω-equivalent to ωαβ.
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7. For each index α, consider the 4-term complex

Kα = [rα −→ TSα |Tα
(dω∨Sα )∨

−−−−−→ FSα |Tα
φSα−−→ r∨α(−DSα)],

where by convention we place FSα |Tα in degree 1. θα induces an isomorphism θbα : Obred
Sα
|T sαβ →

Obred
Sαβ

. This does not change if we replace ωSα by any Ω-equivalent section. Analogous

statements are true for the index β.

8. We obtain comparison isomorphisms

θbαβ := (θbβ)−1θbα : Obred
Sα |T sαβ → Ob

red
Sβ
|T sαβ .

These give the same obstruction assignments for the complexes Kred
α , Kred

β on T sαβ.

9. Let now q be a point in the triple intersection

q ∈ [Tα/Rα]×Mn [Tβ/Rβ]×Mn [Tγ/Rγ ]

with stabilizer in class Rq. Then we have S
αβ

as in (6) for the indices α, β, Sβγ as in

(6) for the indices β, γ and Sγα for the indices γ, α with a common Rq-invariant étale

neighbourhood Sαβγ fitting on top of the diagrams of the form (6.1). The descents of

θbαβ, θ
b
βγ , θ

b
γα to [T sαβγ/Rq] satisfy the cocycle condition.

Proof. For n = 0 there is nothing to show, as we may take an empty set of étale morphisms.

We proceed by induction. Suppose the claim is true for n.

Consider the locus of closed points x ∈ Mn whose stabilizer has identity component

conjugate to Rn+1. Then, either x is in the image of some [Tα/Rα] or not.

Let’s examine the first case. Take [Tα/Rα] and consider all such closed points x ∈
[Tα/Rα]. For each x, let [T xα/Rn+1] → [Tα/Rα] be induced by an étale slice [Sxα/Rn+1] →
[Sα/Rα]. Then we consider the collection of étale maps [T̂ xα/Rn+1]→Mn+1 together with

[T ◦α/Rα] → Mn+1 where T ◦α is the complement in Tα of the locus of closed points with

stabilizer whose identity component is conjugate to Rn+1. We may repeat this process for

all [Tα/Rα]→Mn and x. We say that these étale maps are of type I.

So, consider x ∈Mn such that x does not lie in the image of any [Tα/Rα]. In particular,

by (3) x does not lie in EXn and thus we may assume that it is a closed point of [X/G]. Then

there exist slices T ⊂ S ⊂ P such that T is in standard form for data (T, S,ΩS , dfS , 0, σS)
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of a local model on S and we have étale morphisms [T/Rn+1] → Mn, [S/Rn+1] → Pn.

Then, we may take étale maps [T̂ /Rn+1]→Mn+1, [Ŝ/Rn+1]→ Pn+1. We may repeat this

process for all such x. We say that these maps are of type II.

We have thus produced a collection of étale morphisms for Mn+1 and Pn+1. It is

clear by our choice and the inductive hypothesis that (1)-(5) are automatically satisfied by

Lemma 4.1.5 and the properties of Kirwan blowups.

To check (6), the fact that the maps are unramified follows from the slice property since

the derivatives are injective around the point of interest. Furthermore, since by (5) the

restriction of a map of type I to the complement of EXn clearly yields rise to a map of type

II for Mn+1 it suffices to produce comparison data for maps of the same type.

Now, for two maps of type I, we may assume that Sαβ in (6.1) factors through Sxα and Syβ

and therefore we may use θ̂α and θ̂β to get comparison data, which satisfy the requirements,

since Ω-equivalence is preserved by Kirwan blowups and taking slices by Lemma 4.2.4 and

Lemma 4.2.6.

For two maps of type II, coming from two choices of [T/Rn+1]→M and [S/Rn+1]→ P,

we may find (up to shrinking), as in the proof of Proposition 2.3.7 and using the properties

of d-critical loci, a common étale refinement Tαβ → Tα, Tαβ → Tβ with Tαβ = (ωαβ =

dfαβ = 0) ⊂ Sαβ and commutative comparison diagrams

Tαβ //

��

Sαβ

θα
��

Tα // Sα

fα
��

A1

(6.2)

fitting in a diagram of the form (6.1) for M0 :=M and P0 := P, such that θα, θβ are étale

and dfα|Sαβ , dfβ|Sαβ are Ω-equivalent to dfαβ. Since Ω-equivalence is preserved for Kirwan

blowups and taking slices, we see that (6) is satisfied in this case as well and exceptional

divisors pull back to exceptional divisors (cf. Lemma 4.1.5).

Finally (7) and (8) are an immediate consequence of the inductive hypothesis and

Lemma 4.3.12 of the preceding section. The existence of Sαβγ in (9) can be seen, using

the inductive hypothesis for maps of type I, and the d-critical structure for maps of type

II. The cocycle condition follows from the commutativity of the diagrams of quotient stacks
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induced by (6.1) and the fact that by construction θbα is induced by pullback, is functo-

rial with respect to compositions and both the reduced obstruction sheaves Obred
Sα

and the

morphisms θα descend to the level of quotient stacks. We note here that all the results of

Section 6 hold true if one replaces embeddings by unramified morphisms, so they apply to

the present situation as well (cf. Remark 4.3.13).

We are now in position to show that M̃ = Mm is equipped with a semi-perfect ob-

struction theory of dimension 0. Let [Tα/Rα] → M̃ be the cover granted by the previous

proposition. Each [Tα/Rα] is a DM stack and together they cover the strictly semistable

locus of M. Then for any x ∈ Ms, as in the proof of the preceding proposition, we have

an étale map Tx →M, where Tx is a d-critical locus with Tx ⊂ Sx → P . The stable locus

Ms is not affected during the partial desingularization procedure and so Ms is an open

substack of M̃ and we get étale maps Tx → M̃. We obtain an étale surjective cover

∐
[Tα/Rα]

∐
Tx −→ M̃.

It is easy to check that the obstruction sheaves and assignments of the Tx are compatible

with those of the cover [Tα/Rα]→ M̃ by an identical argument as in the above proof. We

thus see that the reduced obstruction theories indeed give a semi-perfect obstruction theory

of dimension 0 on M̃.

We have proved our main theorem.

Theorem 6.1.2. Let M = [X/G], where X is a quasi-projective scheme, which is the

semistable part of a projective scheme X† with a linearized G-action. Suppose also that M
admits a d-critical structure s ∈ Γ(M,SM) so that (M, s) is a d-critical stack. Then the

Kirwan partial desingularization M̃ is a proper DM stack endowed with a canonical semi-

perfect obstruction theory of dimension zero induced by s, giving rise to a 0-dimensional

virtual fundamental cycle [M̃]vir.

Remark 6.1.3. Since at any point of our construction, we are working with stabilizers

of closed points and slices thereof, M̃ and its obstruction theory are independent of the

particular presentation of M as a quotient stack [X/G].

Remark 6.1.4. If we replace the d-critical structure s by s′ = c · s, where c ∈ C×, the

virtual cycle stays the same. This is because rescaling the d-critical structure is equivalent
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to replacing every d-critical chart (U, V, f, i) of X by (U, V, cf, i) and this does not affect the

intrinsic normal cone of the obstruction theory of M̃.

6.1.2 Definition of the DTK invariant

Let M =Mss(γ) be the moduli stack of Gieseker semistable sheaves with fixed Chern

character γ on a Calabi-Yau threefold W . Let κ : OW → KW be a trivialization of KW .

The stack M is the truncation of a derived Artin stack MMM. Moreover, by [PTVV13]

κ induces a (−1)-shifted symplectic structure on MMM and therefore by [BBBBJ15] a d-

critical structure on M. M = [X/G] is obtained by GIT (cf. [HL10, Section 4]), where

G = GL(n,C), and we may rigidify C×-scaling automorphisms by taking G = PGL(n,C).

The conditions of Theorem 6.1.2 hold and we have the Kirwan partial desingularization M̃
and its virtual fundamental cycle [M̃]vir.

Since choosing a different trivialization amounts to rescaling κ and subsequently the

d-critical structure, by Remarks 6.1.3 and 6.1.4, the virtual cycle does not depend on the

choice of κ or presentation as a quotient stack.

Theorem-Definition 6.1.5. (Generalized DT invariant) We define the generalized DT

invariant via Kirwan blowups of Chern character γ to be

DTK(M) := deg[M̃]vir.

6.2 Deformation invariance

In this section, we use the relative versions of the results of this thesis, obtained via

derived symplectic geometry, to conclude that the generalized Donaldson-Thomas invariant

via Kirwan blowup is invariant under deformations of the complex structure of the Calabi-

Yau threefold W .

6.2.1 Obstruction theory in the relative case

As before, suppose that MMM → C is a (−1)-shifted symplectic derived stack, whose

truncationM = [X/G] is a quotient stack obtained by GIT, where X is a C-scheme and G

acts trivially on C.
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The Kirwan partial desingularization procedure goes through in exactly the same way

as in the absolute case. We have the following modified version of Proposition 6.1.1 in this

relative situation.

The main difference stems from the fact that we need to use local models, arising from

special cdga’s (cf. Definition 8.8), which satisfy a minimality property (cf. Definition 8.6).

Here, for the sake of full generality, we no longer use slices Sα coming from a global embed-

ding M→ P into a smooth stack and we will need to use the notion of Ω-compatibility to

address the issue of extra coordinates. In particular, in the analogue of diagram (6.1), we

will be missing the arrows Sα → Pn, Sβ → Pn and Sα, Sβ can have extra coordinates.

Proposition 6.2.1. For each n ≥ 0, let EXn be the union of all exceptional divisors in Mn.

There exist collections of étale morphisms [Tα/Rα]→Mn such that:

1. For each α, Rα ∈ {R1, ..., Rn}.

2. Each Tα is in relative standard form for data

ΛSα = (Tα, Sα, Fα, ωα, Dα, φα)

of a relative local model on a smooth affine Rα-scheme Sα.

3. The collections cover EXn .

4. The identity components of stabilizers that occur in Mn lie, up to conjugacy, in the

set {Rn+1, ..., Rm}.

5. ΛSα restricted to the complement of the union of exceptional divisors ESα ⊂ Sα are

the same as those of a quasi-critical chart on Tα.

6. For indices α, β and q ∈ [Tα/Rα]×Mn [Tβ/Rβ] whose stabilizer has identity component

conjugate to Rq, there exist an affine Tαβ in relative standard form for data

ΛSαβ = (Tαβ, Sαβ, Fαβ, ωαβ, Dαβ, φαβ)
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of a relative local model and an equivariant commutative diagram

Sαβ
θα

}}

Tαβ

iβ ""iα||

oo // Sαβ
θβ

!!
Sα Tαoo

""

Tβ //

||

Sβ

Mn,

(6.3)

such that ΛSαβ is a common roof for ΛSα and ΛSβ coming from a diagram of the form

(5.6). Moreover, θα factors as Sαβ → S′α → Sα where S′α is an étale slice for Sα at

the image of q, Tαβ → T ′α is étale and Sαβ → S′α is unramified. Analogous conditions

hold for the index β.

7. For each index α, consider the 4-term complex

Kα = [rα −→ TSα |Tα
(dω∨Sα )∨

−−−−−→ Fα|Tα
φSα−−→ r∨α(−Dα)],

where by convention we place FSα |Tα in degree 1. θα induces an isomorphism θbα : Obred
Sα
|T sαβ →

Obred
Sαβ

. This also does not change if we replace ωSα by any Ω-equivalent section. Anal-

ogous statements are true for the index β.

8. We obtain comparison isomorphisms

θbαβ := (θbβ)−1θbα : Obred
Sα |T sαβ → Ob

red
Sβ
|T sαβ .

These give the same obstruction assignments for the complexes Kred
α , Kred

β on T sαβ.

9. Let now q be a point in the triple intersection

q ∈ [Tα/Rα]×Mn [Tβ/Rβ]×Mn [Tγ/Rγ ]

with stabilizer in class Rq. We then have a commutative Rq-equivariant diagram of
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common roofs

Λαβγ

yy %%
Λαβ,βγ

zz %%

Λβγ,γα

zz $$
Λαβ

}} $$

Λβγ

yy %%

Λγα

zz !!
Λα Λβ Λγ Λα

such that all the morphisms between local models Λλ → Λµ, where λ, µ are multi-

indices, satisfy the properties of a roof, the morphisms Tλ → Tµ are étale, and we have

induced isomorphisms Obred
µ |T sλ → Ob

red
λ . The descents of θbαβ, θ

b
βγ , θ

b
γα to [T sαβγ/Rq]

satisfy the cocycle condition.

Proof. In the same way as in the absolute case, all conditions (1)-(9) are preserved at each

inductive step. So we only need to check that they hold in the beginning and also address

the differences in (6), (7) and (9) from the absolute case.

By the previous subsection, roofs exist and they satisfy the conditions of (6) by con-

struction, since we may first replace TαTαTα/Rα by an étale slice TαTαTα
′/H (and similarly for the

index β) and then take a common roof. In particular, by Lemma 4.3.8 and Lemma 4.3.12

we immediately deduce that θbα indeed induce isomorphisms on the reduced obstruction

sheaves. It is at this point where we have to use the notion of Ω-compatibility to deal with

possible extra coordinates.

Finally, the cocycle condition holds by applying Remark 5.2.11 and using Lemma 4.3.8,

4.3.10, 4.3.11 and 4.3.12, which are valid in the relative setting, and going through the

appropriate diagrams of roofs granted by (9). We leave the details to the reader.

We have shown that we can follow the same steps as in the absolute case to obtain the

following theorem.

Theorem 6.2.2. Let M = [X/G]→ C, where X → C is a quasi-projective scheme, which

is the semistable part of a projective scheme X† → C with a linearized G-action and C

is a smooth, quasi-projective curve with a trivial G-action. Suppose also that M is the

truncation of a relative (−1)-shifted symplectic derived stack MMM over C. Then the Kirwan

partial desingularization M̃ → C is a proper DM stack over C endowed with a canonical
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relative semi-perfect obstruction theory induced by the relative (−1)-shifted symplectic form,

giving rise to a virtual fundamental cycle [M̃]vir.

Furthermore, the restriction of the obstruction theory to the fiber M̃c over a point c ∈ C
is the semi-perfect obstruction theory of Theorem 6.1.2, constructed in the absolute case.

6.2.2 Deformation invariance of DTK invariants

Let W → C be a family of Calabi-Yau threefolds over a smooth affine curve. The

relative canonical bundle KW/C is then trivial.

Let M be the moduli stack of relatively semistable sheaves over C of Chern character

γ on W . As in the absolute case, a trivialization of KW/C induces a relative (−1)-shifted

symplectic structure on the derived stack MMM → C. Then by Theorem 6.2.2, it follows

that applying the same construction we obtain a Kirwan partial desingularization M̃ → C

with a relative semi-perfect obstruction theory, which induces the absolute semi-perfect

obstruction theory on each fiber M̃c we constructed earlier.

Moreover, its fiber over c ∈ C is the Kirwan partial desingularization of the moduli

stack of semistable sheaves on Wc by the results of Section 2.4. Therefore, by “conservation

of number” for semi-perfect obstruction theories [CL11, Proposition 3.8], the generalized

Donaldson-Thomas invariant stays the same along the family, i.e. DTK(Mc) is constant

for c ∈ C.

Theorem 6.2.3. The generalized DT invariant defined in Theorem-Definition 6.1.5 is in-

variant under deformation of the complex structure of the Calabi-Yau threefold.

Remark 6.2.4. Choosing a different trivialization of KW/C amounts to rescaling the in-

duced trivializations of KWc on each fiber, so by Remark 6.1.4 our discussion does not

depend on the specific choice of trivialization.

6.3 The case of perfect complexes

In this section, as usual W will denote a smooth, projective Calabi-Yau threefold over

C. We first describe the stability conditions σ on Db(CohW ) that we will be interested

in. We then quote relevant results from the theory of Θ-reductivity, which are necessary in

order to apply a criterion for the existence of a good moduli space. We proceed to show that

moduli stacks of σ-semistable complexes are stacks of DT type and explain how to rigidify
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the C×-automorphisms of stable objects. Finally, we define generalized DT invariants via

Kirwan blowups and state a sufficient condition for their deformation invariance.

We will be interested in stacks which are nicely behaved in the sense of the following

definition.

Definition 6.3.1. (Stack of DT type) Let M be an Artin stack. We say that M is of DT

type if the following are true:

1. M is quasi-separated and finite type over C.

2. There exists a good moduli space π : M→M , where π is of finite type and has affine

diagonal.

3. M is the truncation of a (−1)-shifted symplectic derived Artin stack.

Remark 6.3.2. A stack M parametrizing Gieseker semistable sheaves on W of a fixed

Chern character is of DT type.

6.3.1 Stability conditions

By [Lie06], there is an Artin stack Perf(W ) of (universally gluable) perfect complexes

on W , which is locally of finite type. We will be interested in the following setup.

Setup 6.3.3. Consider the data:

1. A heart A ⊂ Db(CohW ) of a t-structure.

2. A vector γ ∈ H∗(W,Q).

3. A stability condition σ on Db(CohW ).

These are required to satisfy the conditions:

1. The stack M := Mσ−ss(γ) of σ-semistable objects in A of Chern character γ is an

Artin stack of finite type.

2. M is an open substack of Perf(W ).

3. M satisfies the existence part of the valuative criterion of properness. We then say

that M is quasi-proper or universally closed.
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4. Any modification of a map SpecR→M, where R is a discrete valuation ring, can be

factored as a sequence of elementary modifications.

Let us explain the last condition in more detail. Let R be a discrete valuation ring

with fraction field K and closed point s ∈ SpecR. Consider a morphism h : SpecR →M,

corresponding to a complex F ∈ Db(CohWR).

Definition 6.3.4. A morphism h′ : SpecR→M is called a modification of h if h′K ' hK .

Let us write Fs for the (derived) restriction of F to the special fiber Ws
i−→W . Consider

an exact sequence

0 −→ E −→ Fs −→ Q −→ 0

in A. By adjunction, this induces a map F → i∗Q. Let G be its kernel.

Definition 6.3.5. G is called the elementary modification of F at Q.

These definitions explain the meaning of condition (4) above.

Remark 6.3.6. If G is an elementary modification of F , then we obtain another exact

sequence

0 −→ Q −→ Gs −→ E −→ 0.

Hence Fs and Gs are S-equivalent. In particular, if FK is the complex corresponding to

a morphism SpecK → M, any extension FR to a family over SpecR is unique up to

S-equivalence.

Definition 6.3.7. (Stability condition) A stability condition σ on W will be one of the

following:

1. A Bridgeland stability condition in the sense of Toda-Piyaratne [PT15].

2. A polynomial stability condition in the sense of Lo [Lo11, Lo13].

3. A weak stability condition in the sense of Joyce-Song [JS12, Definition 3.5], where we

take A = CohW and K(A) = N(W ), such as Gieseker stability and slope stability.

By the results of the mentioned authors, these satisfy all the required properties given in

Setup 6.3.3.

Remark 6.3.8. More generally, one may consider any set of data that make the conditions

of Setup 6.3.3 true.
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6.3.2 Θ-reductive stacks

Θ-reductivity is a notion that will be helpful in the following subsections. We state the

definition and properties we will use.

Definition 6.3.9. [Hal14, Definition 2.27] Let Θ = [A1/Gm]. We say that M is Θ-

reductive if for any discrete valuation ring R with fraction field K and any morphism

ΘK ∪SpecK SpecR→M there exists a unique extension ΘR →M.

Lemma 6.3.10. [Hal14, Lemma 4.22] Let A ⊂ Db(W ) be the heart of a t-structure. The

moduli stack M(γ) of objects in A of Chern character γ is Θ-reductive.

Proposition 6.3.11. If σ is a stability condition on W , then the stack Mσ−ss(γ) of σ-

semistable objects of Chern character γ is Θ-reductive.

Proof. This is a formal consequence of the previous lemma. It suffices to notice that the

proof of Lemma 6.3.10 goes through if one replaces the heart A ⊂ Db(W ) with an abelian

subcategory C ⊂ A and that σ-semistable objects of fixed slope φ (determined by γ) form

an abelian category.

6.3.3 Moduli stacks of semistable complexes are of DT type

We will make use of the following criterion.

Theorem 6.3.12. [AHLH] Let M be an Artin stack of finite type over C with affine diag-

onal. Suppose that the following are true:

1. Closed points of M have reductive stabilizers.

2. M is Θ-reductive.

3. For every discrete valuation ring R with fraction field K and any morphism h : SpecR→
M with an automorphism φK ∈ Aut(hK) of finite order, there exists h′ : SpecR→M
such that h′K ' hK and φK extends to an element of Aut(h′).

Then M admits a good moduli space π : M→M .

Remark 6.3.13. Property (3) is a special case of what is called “unpunctured inertia”. It

is also true that if M has connected stabilizers then M has unpunctured inertia.
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From now on, we write M =Mσ−ss(γ) for convenience, where σ is one of the stability

conditions of Definition 6.3.7. We immediately obtain the following corollary.

Theorem 6.3.14. [AHLH] M admits a good moduli space π : M→M .

Proof. We will apply the previous theorem.

Closed points of M correspond to polystable objects. Their stabilizers are products of

general linear groups and hence reductive. This shows (1).

By Proposition 6.3.11, we know that M is Θ-reductive. This shows (2).

Finally, if φK is an automorphism of hK : SpecK → M, i.e. a semistable perfect

complex E⊗K of OW ⊗K-modules, then since the objects ofM lie in an abelian category

A, we have an injection E → E ⊗K by the arguments of [Hal14, Lemma 4.22]. hK is of

finite order and so we may decompose E ⊗K =
⊕

λE
λ
K as a direct sum of eigenspaces for

different roots of unity λ. Then, we clearly obtain E =
⊕

λE ∩EλK and we may extend hK

by acting by multiplication by λ on each summand E ∩EλK . This shows (3) and concludes

the proof. Alternatively, M has connected stabilizers, so we can also use the preceding

remark to conclude.

We also have the following proposition.

Proposition 6.3.15. M is separated and of finite type. π : M→ M is of finite type with

affine diagonal.

Proof. Since M is of finite type over C, the same holds for M by Proposition 2.5.2(7). By

Proposition 2.5.2(3), M parametrizes S-equivalence classes of complexes in M. It follows

by condition (4) of Setup 6.3.3 and Remark 6.3.6 that M must be separated.

We have a diagram

M ∆π //

∆M %%

M×MM
α
��

//M

��
M×M //M ×M

where the right square is cartesian. Since M is separated, α is a closed immersion and hence

by the usual cancellation property, since the diagonal of an immersion is an isomorphism,

and ∆M is affine, we deduce that ∆π is affine.

By condition (2) of Setup 6.3.3, M is an open substack of Perf(W ). Since W is a
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Calabi-Yau threefold, by the results of [PTVV13], Perf(W ) is the truncation of a (−1)-

shifted symplectic derived Artin stack. In particular,M is the truncation of a (−1)-shifted

symplectic derived Artin stack.

We have therefore verified the assertion of the following theorem.

Theorem 6.3.16. Let σ be a stability condition as in Definition 6.3.7 and W a Calabi-Yau

threefold. Then the moduli stack Mσ−ss(γ) of σ-semistable objects in A of Chern character

γ is an Artin stack of DT type with separated good moduli space M .

6.3.4 Rigidification of C×-automorphisms of objects

Let M be as in Theorem 6.3.16. We denote T = C×.

To obtain a meaningful DT invariant, it will be necessary to rigidify the C×-automorphisms

of objects in M.

For each family of complexes ES ∈M(S) there exists an embedding

Gm(S)→ Aut(ES)

which is compatible with pullbacks and moreover Gm(S) is central. In the terminology used

in [AGV08], we say that M has a Gm-2-structure.

Using the results of [AOV08] or [AGV08], we may take the Gm-rigification M( Gm

of M. From the properties of rigification, for any point x ∈ M, one has AutM(Gm(x) =

AutM(x)/T . In particular, if x ∈Ms is stable, then AutM(Gm(x) = {id}. M( Gm has the

same good moduli space M and, as in Section 4, an étale cover by cartesian diagrams of

the form

[Uα/(Gα/T )] //

��

M( Gm

��
Uα//(Gα/T ) = Uα//Gα //M.

We may now replaceM byM(Gm and carry out the Kirwan partial desingularization

procedure to get a DM stack M̃. One may check that the results of Chapter 2 go through

by identical arguments.

Lemma 6.3.17. M̃ is a proper Deligne-Mumford stack.



CHAPTER 6. GENERALIZED DONALDSON-THOMAS INVARIANTS 86

Proof. SinceM is quasi-proper by condition (3) of Setup 6.3.3,M(Gm is also quasi-proper.

Since M̃ is quasi-proper over M( Gm, M̃ is also quasi-proper.

It thus remains to show that M̃ is separated. We first check that the map π̃ : M̃ → M̃

is separated. By the above discussion we may assume that this map is of the form [U/G]→
U//G where U is affine and G is finite. But this is separated by a standard fact from GIT

(cf. [MFK94, Proposition 0.8]). In particular, we deduce that

M̃ −→ M̃×
M̃
M̃

is proper.

Since M̃ is also separated (it is proper over M), the cartesian diagram

M̃ ×
M̃
M̃ //

��

M̃ × M̃

��

M̃ // M̃ × M̃

(6.4)

shows that M̃ ×
M̃
M̃ → M̃ × M̃ is a closed embedding. It immediately follows that the

diagonal M̃ → M̃ × M̃ is proper.

Remark 6.3.18. In the case of semistable sheaves, rigidification is much simpler, since the

moduli stack is a global GIT quotient M = [X/G] where G = GL(N,C), and then one may

work directly with [X/PGL(N,C)] which is the Gm-rigidication.

We can also first take the Kirwan partial desingularization and then rigidify: We may

follow the same steps as in Chapter 2 to obtain an Artin stack M̃′ whose stabilizers are

all of dimension one, by resolving all higher dimensional stabilizers in order of decreasing

dimension. Moreover, for any object ES ∈ M̃′(S) we get an induced embedding Gm(S)→
Aut(ES), compatible with pullbacks, such that Gm(S) is central.

By construction, M̃′ has a good moduli space M̃ and is covered by étale morphisms

[Uα/Gα]→ M̃′

where each [Uα/Gα] is in standard form for data Λα = (Uα, Vα, Fα, ωα, φα). It has a Gm-2-

structure, compatible with the one of M̃′, so that T ⊂ Gα acts trivially on Uα.
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Then we have the Gm-rigification M̃′( Gm of M̃′. From the properties of rigidifica-

tion, for any point x ∈ M̃, one has AutM̃′(Gm(x) = AutM̃′(x)/T , and this is now zero-

dimensional, hence finite. In particular, Gα/T is finite and M̃′( Gm is then a DM stack,

which has the same good moduli space M̃ . It has an étale cover of the form

[Uα/(Gα/T )]→ M̃′( Gm

Each [Uα/Gα] comes with a 4-term complex

gα → TVα |Uα
(dω∨Vα)

∨

−−−−−→ Fα|Uα
φV−→ g∨α(−Dα). (6.5)

Setting t = Lie(T ), we see that the compositions t→ gα → TVα |Uα and Fα|Uα → g∨α(−Dα)→
t∨(−Dα) are zero, since the T -action on Vα is trivial and by property (3) of Setup 4.1.1. It

follows that we have an induced 4-term complex

gα/t→ TVα |Uα
(dω∨Vα)

∨

−−−−−→ Fα|Uα
φV−→ (gα/t)

∨(−Dα), (6.6)

with injective first arrow and surjective last arrow, since [Uα/(Gα/T )] is DM. As in Chapter

4, by taking the kernel and cokernel of these two arrows, this yields a reduced 2-term complex

Eα = [(F red
α )∨|Uα

d(ωred
α )∨−−−−−→ ΩVα |Uα ] (6.7)

giving a reduced perfect obstruction theory on [Uα/(Gα/T )]. These glue to a semi-perfect

obstruction theory on M̃′( Gm.

It is easy to observe that the following proposition is true.

Proposition 6.3.19. We have an isomorphism M̃ ' M̃′(Gm and a commutative diagram

M̃′ //

��

M̃ ' M̃′( Gm

��

// M̃

��
M //M( Gm

//M,

where the vertical arrows are the Kirwan desingularization morphisms.

Combining the above, we get the following theorem.
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Theorem-Definition 6.3.20. M̃ is called the C×-rigidified Kirwan partial desingulariza-

tion of M. It is a proper DM stack with a morphism M̃ → M( Gm and a semi-perfect

obstruction theory of virtual dimension zero.

Remark 6.3.21. By identical reasoning, all of the above hold in greater generality when

M is an Artin stack of DT type with a Gm-2-structure.

An alternative way to rigidify when the objects of Mσ−ss(γ) have non-zero rank, would

be to consider the moduli stack Mσ−ss
L (γ) of fixed determinant L.

6.3.5 Definition of the DTK invariant

Suppose as before that M is an Artin stack of DT type parametrizing σ-semistable

objects in a heart A of a t-structure. Then there is an induced C×-rigidified Kirwan partial

desingularization M̃ with a good moduli space M̃ and its induced semi-perfect obstruction

theory and virtual cycle of dimension zero.

Combining all of the above, Theorem-Definition 6.3.20 yields the following:

Theorem-Definition 6.3.22. Let W be a smooth, projective Calabi-Yau threefold, σ a

stability condition on a heart A ⊂ Db(X) of a t-structure, as in Definition 6.3.7, and

γ ∈ H∗(W ). Then we may define the generalized Donaldson-Thomas invariant via Kirwan

blowup as

DTK
(
Mσ−ss(γ)

)
:= deg [M̃σ−ss(γ)]vir.

6.3.6 The relative case

Let C be a smooth quasi-projective curve over C and W → C be a family of Calabi-Yau

threefolds. We make the following assumption.

Assumption 6.3.23. There is a family σt of stability conditions, where, for each t ∈ C,

σt is as in Definition 6.3.7, stability is an open condition and we have a stack M → C

of relatively semistable objects in Db(CohW ). This parametrizes perfect complexes E such

that the (derived) restriction Et := E|Wt is σt-semistable for all t ∈ C. Moreover, the

morphism M→ C is universally closed.

Remark 6.3.24. When we have a GIT description of M→ C, then Assumption 6.3.23 is

satisfied. This is the case for Gieseker stability of coherent sheaves.
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Given this, all the above results extend to the relative case, since we have analogous

results for good moduli spaces, the local structure of stacks with moduli spaces, Kirwan

partial desingularizations and semi-perfect obstruction theories. In particular, a Luna étale

slice theorem for stacks over a general base will appear in [AHR].

Theorem 6.3.25. Let f : W → C be a family of Calabi-Yau threefolds over a smooth, quasi-

projective curve C, {σt}t∈C a family of stability conditions on Db(CohW ), γ ∈ Γ(C,Rf∗Q)

andM→ C the stack of fiberwise σt-semistable objects of Chern character γt in Db(CohW ),

satisfying Assumption 6.3.23.

Then there exists an induced C×-rigidified Kirwan partial desingularization M̃ → C, a

proper DM stack over C, endowed with a semi-perfect obstruction theory of virtual dimen-

sion zero and a virtual fundamental cycle [M̃]vir. M̃t is the C×-rigidified Kirwan partial

desingularization of Mt and the obstruction theory restricts to the one constructed in the

absolute case.

As an immediate corollary, we have the following theorem.

Theorem 6.3.26. The generalized DT invariant via Kirwan blowups is invariant under

deformations of the complex structure of the Calabi-Yau threefold.

Remark 6.3.27. Assumption 6.3.23 is not too much to ask for. Upcoming work announced

in [BLM+] will establish it in the cases of stability conditions that we consider in Defini-

tion 6.3.7 and therefore the above theorem holds unconditionally.
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